INFROMATION SCIENCE AND ENGINEERING

Batch: 2024

SCHEME and SYLLABUS OF

III and IV SEMESTER B.E.

FOR THE A.Y: 2025-26

Vision of the College:

To develop thoughtful and creative young minds in a learning environment of high academic ambience by synergising spiritual values and technological competence.

Batch: 2024

Mission of the College:

- 1. To continuously strive for the total development of students by educating them in state-of-the-art-technologies and managerial competencies providing best in class learning experience with emphasis on skills, values and learning outcomes and helping them imbibe professional ethics and societal commitment.
- 2. To create research ambience that promotes interdisciplinary research catering to the needs of industry and society.
- 3. To collaborate with premier academic and research institutions and industries to strengthen multidisciplinary education, applied research, innovation, entrepreneurship and consulting ecosystems.

Vision of the Department:

To be a centre for quality education and research in Information Science and Engineering to create high quality professionals for catering to the need of the society.

Mission of the Department:

- 1) To enable students to acquire strong fundamental concepts related to the Information Science and Engineering through experiential learning.
- 2) To educate students towards state-of-the-art-technologies and multidisciplinary practices for a successful career by creating learning-teaching-learning ambience.
- 3) To inculcate life-long learning through innovation and research attitudes among students related to Information Science and Engineering.

Program Educational Objectives (PEOs):

The objectives of Information Science and Engineering degree program are to prepare students to meet the academic excellence, professionalism, and ability to solve a broad range of problems in rapidly changing technological, economic and social environment.

Graduates of the program will:

- 1. Pursue career as software engineer, project manager, data scientist, entrepreneur and pursue higher studies and research in Information Science and Engineering domains.
- 2. Apply mathematical, scientific and Information Science and Engineering knowledge with multidisciplinary approaches to solve real world problems.

3. Possess professionalism, ethical and societal responsibilities and engage in life-long learning through pursuit of skill development and certification courses in Information Science and Engineering.

Batch: 2024

Programme Outcomes (POs):

To achieve the above objectives, Information Science and Engineering degree programme strives to obtain the following outcomes which should be achieved by all graduates at the time of their graduation.

Engineering Graduates will be able to:

- **PO1: Engineering Knowledge:** Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- **PO6:** The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).
- **PO7: Ethics:** Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences

Batch: 2024

- **PO10: Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- **PO11: Life-Long Learning:** Recognize the need for, and have the preparation and ability for
 - i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

Programme Specific Outcomes (PSOs):

- 1) **Computing System:** Demonstrate the knowledge of evolving hardware and/or software to develop solutions to real life computational problems with a focus on performance optimization.
- 2) **Communication and Security:** Design and develop solutions for providing efficient transmission, storage, security and privacy of data in diverse computing environment.
- 3) **Information management:** Apply tools and techniques for management of information system, data analysis and knowledge discovery in the process of decision making.

OF III SEMESTER B.E.

INFORMATION SCIENCE AND ENGINEERING FOR THE A.Y: 2025-26

Batch: 2024

SCHEME OF TEACHING AND EXAMINATION: III Semester

Batch: 2024

	Course little				Too			Teachin	g hrs./week			Examin	ation		
Sl. No.			Course Title	Teaching / Paper setting	Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration	CIE	SEE	Total	Credits		
110.	Cours	Course Cour		Dept.	L	Т	P	S	in hrs.	Marks	Marks	Marks			
1.	PCC / BSC	S3MAT1	Statistics and Probability	Maths	3	0	0		3	50	50	100	3		
2.	IPCC	S3ISI01	Digital Circuits and Computer Organization(Integrated)	IS	3	0	2		3	50	50	100	4		
3.	IPCC	S3ISI02	Advanced Web Technology and Internet Applications(Integrated)	IS	3	0	2		3	50	50	100	4		
4.	PCC	S3IS01	Data Structures	IS	3	0	0		3	50	50	100	3		
5.	PCCL	S3ISL01	Data Structures Laboratory	IS	0	0	2		3	50	50	100	1		
6.	ESC	S3ISSCXX	ESC/ETC/PLC	IS	3	0	0		3	50	50	100	3		
7.	UHV	SHS01	Social Connect and Responsibility (Board: ME)	ME	0	0	2		-	100	-	100	1		
					If o	offered as	Theory Co	urse	11/2						
8.	AEC/ S3ISAXX Ability Enhancement Course/		•	IS	1	0	0		1/2	50	50	100	1		
0.	SEC		Skill Enhancement Course – III		If offered as In					50	50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 7 100 50 100 7 100 7 100 7 100 7 100 7 100	1			
		G3.4G0.4			0	0	2								
	SMC01 National Service Scheme (NSS)		NSS CO						100		100				
9.	NCMC			PED	0	0	2	2		100	-	100	0		
		SMC03	Yoga	PED											
			Total							550	350	900	20		
	AAP AICTE Activity Points (Applicable for both Regular and Lateral Entry students)		40 hours	communit	y service to	o be docume	ented and pr	oduced for	the examin	nation					

Note: PCC: Professional Core Course, IPCC: Integrated Professional Core Course, PCCL: Professional Core Course laboratory,

UHV: Universal Human Value Course, NCMC: Non Credit Mandatory Course, AEC: Ability Enhancement Course, SEC: Skill Enhancement Course,

ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation.

S3ISES01	Object Oriented Programming with C++	S3ISES02	Multimedia Technologies
S3ISES03	Object Oriented Programming with Java	S3ISES04	Game Programming-2D
	Ability Enhancement Course –	the Department)	
S3ISA01	Introduction to Blender Tool: Animation and 3D Creation	S3ISA02	Documentation: MS Office and LaTex
S3ISA03	Unix and Shell Programming		

Integrated Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practical of the same course. Credit for IPCC can be 04 and its

Teaching-Learning hours (L: T: P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the

Batch: 2024

Degree of Bachelor of Engineering (B.E.) 2022-23 may please be referred.

National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first Week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the Degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of Degree.

Statistics and Probability

Contact Hours/ Week:	3(L)	Credits: 3
Total Lecture Hours:	39	CIE Marks: 50
Total Tutorial Hours:	00	SEE Marks: 50
Sub Code:	S3MAT1	Semester: III

Prerequisites: Engineering Mathematics-I and Engineering Mathematics-II.

Course objectives:

This course will enable students to:

- 1. Develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusion.
- 2. Understand the basic concepts and applications of probability in engineering.
- 3. Learn the random variable, random process and how to model the random processes in engineering.
- 4. Understand the multiple random variables and stochastic process.
- 5. Investigate the variability in sample statistics from sample to sample, measure of central tendency & dispersion of sample statistics and pattern of variability of sample.

UNIT I

Statistics: Introduction, Curve Fitting: Straight line, reducible to Linear and Quadratic form-parabola. Definition of Correlation and regression lines, formula for correlation coefficient, regression lines with proof and angle between the regression lines, Rank correlation.

8 Hours

Batch: 2024

UNIT II

Probability: Basic terminology, Definition of probability, Probability and set notations, Types of events, Addition law of probability, conditional probability, multiplication law of probability, Baye's theorem.

8 Hours

UNIT III

Random Variable: Definition of Random Variable, Discrete Probability distribution, expectation, Variance, Binomial distribution, Poisson distribution.

Continuous Probability distribution- expectation, Variance, Normal distribution and Exponential distributions.

8 Hours

UNIT IV

Joint Probability: Joint probability distribution, Discrete and independent random variables, Expectation, Covariance, Correlation coefficient. Probability vectors, stochastic matrices, fixed point matrices, Regular stochastic matrices, Markov chains, Higher transition-probabilities, stationary distribution of regular Markov chains and absorbing states.

UNIT V

Sampling Distribution: Introduction, Objectives, sampling distribution, testing of hypothesis, level of significance, confidence limits, simple sampling of attributes, test of significance of large samples, comparison of large samples, sampling of variables, central limit theorem, confidence limits for unknown mean, test of significance for means of two large samples, Sampling of variables – small samples, Student's t-distribution.

8 Hours

Batch: 2024

TEXT BOOK:

1	B.S.Grewal	Higher Engineering	Mathematics,	43 rd	Edition,	Khanna
		Publications, 2015. ISI	BN: 978-81-7409-	195-5.		
2	Ramana .B.V	Higher Engineering M. ISBN: 0-07-053516-7.	ŕ	McGrav	w Hill, 201	7.

RI	EFERENCE BOOKS						
1	Erwin Kreyszig	Advanced Engineering Mathematics, 10 th Edition, Wiley					
		Publications, 2015. ISBN:978-81-7409-195-5					
2	C. Ray Wylie and	ylie and Advanced Engineering Mathematics, 6 th Edition, Tata-McGraw Hil					
	Louis C. Barrett	2005.					
3	Louis A. Pipes and	Applied Mathematics for Engineers and Physicists, 3 rd Edition,					
	Lawrence R. Harvill	McGraw Hill, 2014.					

Course	Outcomes:
Upon co	ompletion of this course the student will be able to:
CO1.	Apply least square method to fit a curve for the given data and evaluate the correlation coefficient and regression lines for the data.
CO2.	Analyze the nature of the events and hence determine the appropriate probabilities of the events
CO3.	Classify the random variables to determine the appropriate probability distributions and hence compute the associated probability.
CO4.	Computes the joint probability and its parameters. Predicts the long run behavior of a Markov chain using transition matrix.
CO5.	Estimate the parameters of a population and sample in testing of hypothesis.

Mapping of Course outcomes to Program outcomes

		PROGRAM OUTCOMES									
		1 2 3 4 5 6 7 8 9 10 11									
	CO1	3									
COs	CO2	3									
	CO3	3									
	CO4	3	1								
	CO5	3	1								

Digital Circuits and Computer Organization

(Integrated Course)

	` 0		
Contact Hours/ Week:	3L+2P	Credits:	4
Total Lecture Hours:	40	CIE Marks:	50
Total Practical Hours:	26	SEE Marks:	50
Sub. Code:	S3ISI01		

	rse objectives: s course will enable students to:				
1.	Learn different techniques of simplification of Boolean expressions and design of combinational circuits.				
2.	Describe different sequential logic circuits.				
3.	Recognize the significance of number representation, arithmetic operations, memory locations, and machine instructions.				
4.	Learn various addressing modes including implementation of variables and constants, indirection and pointers, indexing, arrays, and relative addressing.				
5.	Explore different techniques of performing arithmetic operations.				

UNIT I

Introduction to Digital System: Boolean Algebra and Boolean Functions, min-term and maxterm notations. Simplification of Boolean expressions using Boolean laws and Rules, Simplification of Boolean expressions using Karnaugh map techniques. Design of combinational Logic Circuits: Design of Decoders, Multiplexers, Demultiplexers.

8 Hours

Batch: 2024

UNIT II

Sequential Logic Circuits

Flip Flops: Introduction to Flip-Flops, Types of Flip-Flops: RS FF, SR FF, JK FF and M/S JK FF. **Counters:** Definition of Counter, Types of Counters, Design of Asynchronous Counters.

Registers: Basic Register, Shift-Register, Types of Shift Registers, Unidirectional and Bidirectional Shift Register, Johnson counter and Ring Counters.

8 Hours

UNIT III

Basic Structure of Computer: Functional Units, Basic Operational Concepts, Bus Structures, Performance - Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement. Machine Instructions and Programs: Numbers, Arithmetic Operations and Characters - Number Representation, Addition of Positive Numbers, Addition and Subtraction of Signed Numbers, Overflow in Integer Arithmetic, Characters, Memory Location and Addresses - Byte Addressability.

8 Hours

UNIT IV

Addressing Modes: Implementation of Variables and Constants, Indirection and Pointers, Indexing and Arrays, Relative Addressing, Additional Modes.

Basic Processing Unit: Execution of a Complete Instruction - Branch Instructions, Multiple Bus Organization, Hard wired Control - A Complete Processor, Micro programmed Control - Microinstructions.

UNIT V

Arithmetic: Addition and Subtraction of Signed Numbers - Addition/Subtraction Logic Unit, Multiplication of Positive Numbers, Signed Operand Multiplication - Booth Algorithm, Fast Multiplication - Bit-Pair Recoding of Multipliers, Carry-Save Addition of Summands, Integer Division, Floating-point Numbers and Operations - IEEE Standard for Floating-Point Numbers, Arithmetic Operations on Floating-Point Numbers - Addition and Subtraction Operations.

8 Hours

Batch: 2024

TE	TEXT BOOKS							
1	Thomas L Floyd	Digital Fundamentals, Pearson Publications. 11 th Edition, 2020.						
2	Carl Hamacher, Zvonko Vranesic, SafwatZaky	Computer Organization, Tata McGraw Hill, 5 th Edition, 2017.						

RI	REFERENCE BOOKS						
1	Donald P Leach, Albert Paul	Digital Principles and Applications, Tata McGraw – Hill, Ed.8,					
	Malvino and Goutam Saha	2014.					
2	Ronald J Tocci, Neil S Widmer, Gegory L. Moss,	Digital Systems-Principles and Applications, Pearson Education, 12 th Edition, 2016.					

List of laboratory experiments

- 1. Design and implementation of Half-adder and Full adder using minimum number of NAND gates only.
- 2. Design and implement the Full adder and Full subtractor using only multiplexer and other gates.
- 3. Design and implement the Full adder and Full subtractor using decoder and other logic gates.
- 4. Implement the following using 4-bit shift register IC 74LS95.
 - a) Right Shift b) SISO
 - ISO c) PIPO
- d) PISO
- e) SIPO

- f) Left Shift g) Ring Counter
- h) Johnson Counter
- 5. Design a sequence generator to generate the given sequence using shift Register IC and other gates.
- 6. Design and implement 3-stage Asynchronous (mod-8) counter using MS J-K flip flops IC7476.
- 7. Implement UP-Down pre-settable counter using IC 74LS190 for the given mod N.
- 8. Design and implement a 3-bit binary mod-n synchronous counter using MS J-K FF IC74LS76.

	Outcomes:			
<u>+</u>	ompletion of this course the student will be able to:			
CO1.	Design combinational logic circuits for the required applications.			
CO2.	Design sequential logic circuits such as counters and registers for the specific needs.			
CO3.	Analyze the performance of a basic computer system.			
CO4.	Apply the knowledge of addressing modes to develop assembly language code and			
	Design control sequence for the given instruction on different CPU bus structures.			
CO5.	Apply appropriate technique to solve arithmetic related problems in computer.			

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

	POs									PSOs					
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	2	2											2	
	CO ₂	2	2	2										2	
COs	CO ₃	2	2	1										2	
	CO4	2	2	1										2	
	CO5	2	1	1										2	
	AVG	2	2	2										2	

Advanced Web Technology and Internet Applications

(Integrated Course)

Contact Hours/ Week:	3L + 2P	Credits:	4
Total Lecture Hours:	40	CIE Marks:	50
Total Practical Hours:	26	SEE Marks	50
Sub. Code:	S3ISI02		

Cou	ırse objectives:
This	s course will enable students to:
1.	Acquire knowledge and skills for creation of web site considering both client and server-side programming.
2.	Gain ability to develop responsive web applications.
3.	Acquire skills to validate and handle errors using PHP.
4.	Create web services using XML, JSON and PHP.
5.	Acquire knowledge of Java scripting to develop web pages.

UNIT I

Introduction to Web Development: A Complicated Ecosystem, Definitions and History, The Client-Server Model, Where Is the Internet? Working in Web Development.

How the Web Works: Internet Protocols, Domain Name System, Uniform Resource Locators, Hypertext Transfer Protocol, Web Browsers, Web Servers.

8 Hours

Batch: 2024

UNIT II

Introduction to HTML: What is HTML and Where did it come from? HTML Syntax, Semantic Markup, Structure of HTML Documents, Quick Tour of HTML Elements, HTML5 Semantic Structure Elements.

Introduction to CSS: What is CSS, CSS Syntax, Location of Styles, Selectors, The Cascade: How Styles Interact, The Box Model, CSS Text Styling.

8 Hours

UNIT III

JavaScript: Client-Side Scripting: What is JavaScript and What can it do? JavaScript Design Principles, where does JavaScript Go? Syntax, JavaScript Objects, The Document Object Model (DOM), JavaScript Events, Forms.

Introduction to Server-Side Development with PHP: What is Server-Side Development, A Web Server's Responsibilities, Quick Tour of PHP, Program Control, Functions.

8 Hours

UNIT IV

PHP Arrays and Superglobals: Arrays, \$_GET and \$_POST Super global Arrays, \$_SERVER Array, \$ Files Array, Reading/Writing Files.

Error Handling and Validation: What are Errors and Exceptions? PHP Error Reporting, PHP Error and Exception Handling.

8 Hours

UNIT V

Advanced JavaScript and jQuery: JavaScript Pseudo-Classes, jQuery Foundations, AJAX, Asynchronous File Transmission, Animation, Backbone MVC Frameworks.

XML Processing: XML Processing, JSON.

ľ	TE	XT BOOKS								
	1	Randy Connolly,	Fundamentals	of	Web	Development,	Pearson	Education	India,	2 nd
		Ricardo Hoar	Edition, 2018.							

REFERENCE BOOKS							
1	Robin Nixon	Learning PHP, MySQL & JavaScript with jQuery, CSS and HTML5, 4th					
		Edition, O'Reilly Publications, 2015.					
3	Dean Wampler	Programming Hive, O'Reilly, Kindle Publication, 1st Edition, 2012.					

List of laboratory experiments:

- 1. To design user interface for a given scenario using basic HTML tags.
- 2. To demonstrate the concepts of CSS selectors and conflict resolution
- 3. To demonstrate the concepts of various UI components
- 4. To demonstrate the concepts of syntactic structures of JavaScript
- 5. To demonstrate the Client side validation using JavaScript
- 6. To construct a JSON and XML structures
- 7. To demonstrate the working of Server side program with forms using PHP
- 8. To demonstrate the database access with PHP

Course	Outcomes:					
Upon co	ompletion of this course the student will be able to:					
CO1.	Describe the fundamental concepts of web development.					
CO2.	esign static web pages using HTML and CSS.					
CO3.	Apply client-side and server-side scripting languages to develop web applications.					
CO4.	Implement validation and error handling using PHP to build efficient server-side web applications.					
CO5.	Apply and implement JSON and XML scripts to share information across web applications.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

	POs								PSOs						
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	2		2										3	
	CO ₂			3										3	
COs	CO ₃	2												3	
	CO4	2												3	
	CO ₅			3										3	
	AVG	2		3										3	

Data Structures

Contact Hours/Week:	3L	Credits:	3.0
Total Lecture Hours:	40	CIE Marks:	50
Course Code:	S3IS01	SEE Marks:	50

1	rse objectives:
This	course will enable students to:
1.	Describe the efficient data storage mechanisms for easy access.
2.	Describe the properties of various data structures such as stacks, queues, lists, and
	trees.
3.	Implement Stack and Queue data structures and their applications.
4.	Design and implement various types of linked lists, trees and their applications.
5.	Apply the knowledge to select an appropriate data structure for a problem to be
	solved.

UNIT I

Structures and Unions: Defining a Structure, declaring Structure variables, accessing Structure members, Structure initialization, copying and comparing Structure variables, operations on individual members, array of Structures, array within Structure, Structure within Structure, Structures and Functions, Unions, size of structures.

File management in C: Defining and Opening a file, Closing a file, Input/Output operations on files - getc(), putc(), getw(), putw(), fscanf(), fprintf(), Error handling during I/O operations - feof(), ferror(), Random access to files - ftell(), rewind(), fseek(), Command line arguments. (Text Book 1: 10, 12)

8 Hours

Batch: 2024

UNIT II

The Stack: Definition and Examples, representing Stacks in C, Infix, Applications of stacks: Postfix, and Prefix expressions, conversion and evaluation.

Recursion: Recursive Definition and Processes, Recursion in C, Writing recursive programs: The Towers of Hanoi Problem, Efficiency of Recursion.

Queues: The Queue and Its Sequential Representation: C implementation of Queues, Insertion, Deletion and Display operations, Types of Queues (Linear, Circular).

(Text Book 2: 2, 3.1, 3.2, 3.3(only the Towers of Hanoi Problem), 3.5. 4.1(excluding Queue as an ADT))

8 Hours

UNIT III

Dynamic memory allocation: malloc(), calloc(), realloc(), free().

(Text Book 1: 13.1-13.6)

Linked lists: Inserting and removing nodes from a list, linked implementation of stacks, getnode and freenode operations, linked implementation of queues, examples of list operation, list implementation of priority queues, header nodes.

Lists in C: allocating and freeing dynamic variables, linked lists using dynamic variables, queues as lists in C, examples of list operations in C, non-integer and non-homogeneous lists, Addition of two polynomials, implementing header nodes.

(Text Book 2: 4.2, 4.3(except array implementation of list, Limitations of array implementation, comparing dynamic and array implementations of list))

UNIT IV

Other List Structures: Circular lists, stack as a Circular list, queue as a Circular list, primitive operations on circular lists, the Josephus problem, header nodes, Doubly linked lists, Primitive operations on Doubly linked list.

(Text Book 2: 4.5(except addition of long positive integers using circular and doubly linked list))

8 Hours

Batch: 2024

UNIT V

Trees: Operations on Binary Trees, Applications of Binary Trees, Binary Tree Representations: Node representation of Binary Trees, Internal and External Nodes, Implicit array representation of Binary Trees, Binary Tree Traversals in C.

Trees and Their applications: C Representations of Trees, Tree Traversals, General Expressions as Trees, Evaluating an Expression Tree, Constructing a Tree.

(Text Book 2: 5.1, 5.2, 5.5(except choosing Binary Tree Representation, Traversal using a Father field, Heterogeneous Binary Trees))

8 Hours

Self-study Concepts:

Priority and Double Ended Queues

Threaded Binary Trees - definition and types

NOTE: Self-study topics are assessed only in CIE-Quizzes/ Assignments

TEXT BOOKS:

1.	E. Balagurusamy	Programming in ANSI C, 8 th Edition, Tata McGraw-Hill
		Publications, 2019. (Unit I)
2.	Yedidyah Langsam, Moshe	Data structures using C and C++, PHI/Pearson, 2 nd
	J. Augenstein, Aaron M.	Edition, 2015. (Unit II to V)
	Tenenbaum	

REFERENCE BOOKS:

1.	Horowitz, Sahni and	Fundamentals of Data Structures in C, 2 nd Edition,	
	Anderson-Freed	Universities Press Pvt. Ltd., 2011	

Course Outcomes: Upon completion of this course the student will be able to: Apply advanced C programming techniques like pointers, structures and files to **CO1.** develop solutions for given problems. CO₂. Implement different data structures like Stacks and Queues using static memory allocation technique. Implement different types of Linked Lists using dynamic memory allocation **CO3.** technique. **CO4.** Apply the knowledge of Stacks, Queues and linked lists to design and develop solutions to given problems. Implement non-linear data structures such as trees and their applications using **CO5**: dynamic memory allocation technique.

	POs													PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3	
	CO1	2											2			
	CO ₂	2											2			
COs	CO ₃			3									2			
	CO4	2		3		1							2			
	CO5			2		1							2			
	AVG	2		3		1							2			

Data Structures Laboratory

Batch: 2024

Contact Hours/Week:	2P	Credits:	1.0
Total Lecture Hours:	-	CIE Marks:	50
Total Practical Hours:	26	SEE Marks:	50
Course Code:	S3ISL01		

Course objectives:

This course will enable students to:

- 1. Develop and implement Linear data structures and their applications such as stacks, queues using static memory allocation.
- 2. Develop and implement Linear data structures such as linked lists using dynamic memory allocation.
- 3. Explore the applications of linked lists and implement the same.
- 4. Develop and implement Non-Linear data structures such as trees and their applications.

List of Laboratory experiments

1. Write a C program to create a sequential file with at least five records, each record having the structure shown below:

EMPLOYEE_ID	NAME	DEPARTMENT	SALARY	AGE
Non-Zero	25 Characters	25 Characters	Positive	Positive
Positive integer			Integer	integer

Write necessary functions to perform the following operations:

- a) to display all the records in the file.
- b) to search for a specific record based on EMPLOYEE ID.
- Develop and implement a STACK of integers using array and perform the following operations: (a) PUSH (b) POP (c) DISPLAY and (d)check whether the contents of stack form a palindrome.
- Write a C program to convert
 - (a) the given infix expression to postfix expression.
 - (b) the given infix expression to prefix expression.
 - (c) to evaluate a given prefix/postfix expression.
- Develop and implement linear QUEUE of strings using array and perform the following operations: (a) insertion, (b) deletion and (c) display.
- 5 Develop and implement CIRCULAR QUEUE of integers using array and perform the following operations: (a) insertion, (b) deletion and (c) display.
- 6 Develop and implement singly linked list with integer data and perform the following operations:
 - a) to insert a node at the end of the list.
 - b) to delete the first node in the list.
 - c) to insert a node at the specified position in the list (1<=pos<=n where 'n' is the total number of nodes in the list & 'pos' is the position where data is to be inserted).
 - d) to display the contents of the list.
 - e) to reverse a given list.
- 7 Develop and implement two *ordered singly linked lists* with the following operations:
 - a) insert into list1.
 - b) insert into list2.
 - c) to perform UNION of list1 and list2

	d) to perform INTERSECTION of list1 and list2
	e) display the contents of all three lists.
8	Develop and implement a STACK of integers using singly linked list and perform the following operations: (a) PUSH (b) POP (c) DISPLAY.
9	Develop and implement linear QUEUE of integers using singly linked list and perform the following operations: (a) insertion, (b) deletion and (c) display
10	Develop and implement addition of two polynomials with two coefficients using singly linked lists.
11	Develop and implement doubly linked list with header node with the following operations: (Header node should maintain the count of number of nodes in the list after each operation). a) Insert a node at the end of the list. b) Insert a new node next to a node whose information field is specified. c) To delete first node if pointer to the last node is given. d) To delete a node whose information is given. e) To display the contents of the list. f) To swap n th and m th nodes in the list.
12	Develop and implement DEQUE using doubly linked list to perform the following operations: insertion, deletion and display
13	Develop and implement binary search tree (BST) of integers to perform the following operations: a) Insert into a BST. b) Traverse the tree in inorder/ preorder/ postorder. c) Delete a given node from the BST.
14	Develop and implement an expression tree for a given valid postfix expression and evaluate the expression tree.

	Outcomes: ompletion of this course the student will be able to:
CO1:	Design and develop C programs by applying C programming techniques like pointers, structures and files to develop solutions for particular problems.
CO2:	Design and develop Linear data structures like Stack, Queue using static memory allocation technique and explore their applications.
CO3:	Design and develop Linear data structures like Linked Lists using dynamic memory allocation technique.
CO4:	Apply the knowledge of dynamic memory allocation technique to develop and implement non-linear data structures like Trees and their applications.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

		POs												PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3	
	CO1	3												3		
COa	CO ₂	3	2											3		
COs	CO ₃	3												3		
	CO4	3	3											3		
AVG		3												3		

Object Oriented Programming with C++

(Engineering Science Course-III-1)

Contact Hours/ Week:	3	Credits:	3
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S3ISES01	SEE Marks:	50

Course objectives:

This course will enable students to:

- 1. Learn the basic principles of object-oriented programming using C++.
- 2. Analyze OOPs concepts such as classes, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, templates.
- 3. Explore how Object-Oriented programming is used as a reusable software system.
- 4. Discuss how Object-Oriented programming is used in modular designing.
- 5. Learn the usage of exception handling and templates to solve real world problems.

UNIT I

Principles of Object-Oriented Programming and Functions: Procedure oriented Programming, Object oriented Programming Paradigm, basic concepts of object oriented programming, Benefits of OOPS, Object oriented languages, Applications of OOP, Reference Variables, Operators in C++, Scope resolution Operator, Memory dereferencing operators Memory management operators, Manipulators, Function prototyping, call by reference, return by reference, inline functions, default arguments, constant arguments, function overloading.

Classes and Objects: C structure revisited, specifying a class, Defining member functions, A C++ program with class static member functions, Making an outside function inline, Nesting of member functions, Private member functions, Arrays within a class, memory allocation for objects, static data members, Array of objects, objects as function arguments, Friend functions, returning objects.

9 Hours

Batch: 2024

UNIT II

Constructors and Destructors: Constructors, parameterized constructors, Copy constructors, Multiple constructors in a class, Constructors with default arguments, Dynamic initialization of objects, Dynamic constructors

Operator Overloading and Type Conversions: Introduction, Defining operator overloading, Overloading Unary and Binary operators, Overloading binary operators using friend function, Manipulation of strings using operators, Rules for overloading operators, type conversions.

8 Hours

UNIT III

Inheritance: Introduction, Defining derived classes, Single inheritance, making a private member inheritable, Multi-level inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Constructors in derived classes, Nesting of classes.

Virtual Functions and Polymorphism: Introduction, Pointers, pointers to objects, this pointer, pointers to derived classes Virtual functions, pure virtual functions.

8 Hours

UNIT IV

Templates: Introduction, class templates, Class templates with multiple parameters, Function templates, Function templates with multiple parameters, Overloading of template functions, Member function templates, non-type template arguments.

_		
v	LATING	
	Hours	

UNIT V

Exception Handling: Introduction, basics of Exception handling, Exception handling mechanism, Throwing mechanism, catching mechanism, rethrowing an exception, specifying exceptions, Exceptions in constructors and destructors, exceptions in operator overloaded functions.

7 Hours

TE	XT BOOKS		
1	E. Balagurusamy	Object Oriented Programming with C++, 8 th Edition, TMH, 2020.	

Rl	EFERENCE BOOKS	
1	Herbert Schildt	The Complete Reference C++, 5 th Edition, TMH, 2015.
2	Stephen R. Davis	C++ for Dummies, 7 th Edition, John Wiley and Sons Inc, 2014.

Course	Outcomes:
Upon co	ompletion of this course the student will be able to:
CO1:	Apply various C++ constructs such as classes, functions, function overloading and dynamic memory management to develop solutions to problems.
CO2:	Develop programs using constructors, destructors, illustrate Operator overloading and type conversion concepts.
CO3:	Design programs using Inheritance to achieve code reusability and virtual functions to achieve run time polymorphism.
CO4:	Design and Apply Templates to handle real world problems.
CO5:	Analyze different exceptions and develop programs to handle various exceptions.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs													PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3	
COs	CO1	3												3		
	CO ₂	3	2											3		
	CO ₃	3												3		
	CO4	3												3		
	CO5	3	2											3		
AVG		3												3		

Multimedia Technologies

(Engineering Science Course III-2)

Contact Hours/ Week:	3	Credits:	3
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S3ISES02	SEE Marks:	50

;	e objectives: ourse will enable students to:
1.	Learn the fundamental concept of Multi-media and Hypermedia technologies.
2.	Explore different lossless compression algorithms on multimedia data.
3.	Describe the different lossy compression algorithms for two-dimensional data.
4.	Differentiate JPEG and JPEG 2000 Standards for reducing the image size.

UNIT I

Introduction to Multimedia, Graphics and Image Representation, Fundamental concepts in Video and audio: Definition of Multimedia, Multi-media and Hypermedia. Graphics/Image Data Types, Popular File Formats. Types of Video Signals, Analog Video, Digital Video, Digitization of sound, Quantization and Transmission of Audio.

Chapter 1, 1.1 1.2, Chapter 3, 3.1 & 3.2, Chapter 5, 5.1 to 5.3 and Chapter 6, 6.1 & 6.3.

5. Familiarize with the various versions of MPEG.

8 Hours

Batch: 2024

UNIT II

Lossless compression algorithms: Introduction to lossless compression, Basic information theory, Run-length coding, Variable- length coding, Dictionary-Based Coding, Arithmetic coding, Lossless Image compression.

Chapter 7, 7.1 to 7.7.

8 Hours

UNIT III

Lossy compression algorithms: Introduction to lossy compression, Distortion measures, Quantization, Transform coding, Wavelet-Based coding, Wavelet Packets, Embedded Zero tree of Wavelet Coefficients, SPIHT.

Chapter 8, 8.1 to 8.9.

8 Hours

UNIT IV

Image Compression Standards and MPEG Video Coding I: The JPEG standard, The JPEG2000 standard, The JPEG-LS standard, Bi-level Image compression standard, H.261, Overview of MPEG-1.

Chapter 9- 9.1 to 9.4, Chapter 10- 10.1 to 10.4 and Chapter 11-11.1 to 11.2

8 Hours

UNIT V

MPEG Video Coding II: MPEG-2, Overview MPEG-4, Object Based Visual Coding in MPEG-4, Synthetic Object coding in MPEG-4, MPEG-7.

Chapter 11-11.3 Chapter 12-12.1 to 12.3 & 12.6.

TE	EXT BOOKS	
1	Ze-Nian Li,	Fundamentals of Multimedia, Springer, 3 rd Edition, 2021.
	Mark S. Drew and	
	Jiangchuan Liu	

RI	EFERENCE BOOKS											
1	Khalid Sayood	Introduction	to	Data	Compression,	3 rd	Edition,	Morgan				
		Kaufmann Publishers, 2017.										

Course	Outcomes:
Upon co	empletion of this course the student will be able to:
CO1.	Describe the fundamental concepts of multimedia data.
CO2.	Apply lossless compression algorithms to compress the text and image data.
CO3.	Apply lossy compression algorithms for text and image data.
CO4.	Describe image compression standards.
CO5.	Describe Object Based Visual Coding and Synthetic Object coding compression
	standards.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs												PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO ₁	3												3	
	CO ₂	3	2											3	
COs	CO ₃	3	2											3	
	CO4	3	2											3	
	CO5	3												3	
AVG		3												3	

Object Oriented Programming with Java

(Engineering Science Course-3)

Contact Hours/ Week:	3	Credits:	3
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S3ISSC03	SEE Marks:	50

Cou	ırse	objectives:
This	s co	urse will enable students to:
	1.	Learn the basic principles of object-oriented programming using Java.
	2.	Learn various operators and control statements used in Java.
	3.	Analyze OOP concepts such as classes and inheritance to develop programs.
	4.	Develop programs using Exception handling to handle run time errors.

UNIT I

5. Explore the importance of multithreading and generics.

An Overview of Java: Object-Oriented Programming, A First Simple Program, A Second Short Program, Two Control Statements, Using Blocks of Code, Lexical Issues, The Java Class Libraries, Data Types, Variables, and Arrays: Java Is a Strongly Typed Language, The Primitive Types, Integers, Floating-Point Types, Characters, Booleans, A Closer Look at Literals, Variables, Type Conversion and Casting, Automatic Type Promotion in Expressions, Arrays, A Few Words About Strings.

8 Hours

Batch: 2024

UNIT II

Operators: Arithmetic Operators, The Bitwise Operators, Relational Operators, Boolean Logical Operators, The Assignment Operator, The ? Operator, Operator Precedence, Using Parentheses, Control Statements: Java"s Selection Statements, Iteration Statements, Jump Statements.

8 Hours

UNIT III

Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing Methods, Constructors, The this Keyword, Garbage Collection, The finalize() Method, A Stack Class, A Closer Look at Methods and Classes: Overloading Methods, Using Objects as Parameters, A Closer Look at Argument Passing, Returning Objects, Recursion, Introducing Access Control, Understanding static, Introducing final, Arrays Revisited, Inheritance: Inheritance, Using super, Creating a Multilevel Hierarchy, When Constructors are Called, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance, The Object Class.

8 Hours

UNIT IV

Packages and Interfaces: Packages, Access Protection, Importing Packages, Interfaces.

Exception Handling: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions, Using Exceptions.

UNIT V

Multithreading: Thread life cycle, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, Synchronization, Interthread Communication, Suspending, Resuming, and Stopping Threads.

Generics: What Are Generics?, A Simple Generics Example, A Generic Class with Two Type Parameters, The General Form of a Generic Class, Bounded Types, Using Wildcard Arguments, Creating a Generic Method, Generic Interfaces.

8 Hours

Batch: 2024

TE	XT BOOKS		
1	Herbert Schildt	Java The Complete Reference, 13 th Edition, Tata McGraw Hill, 2024.	

RI	REFERENCE BOOKS											
1	Daniel Liang	Introduction to Java Programming (Comprehensive Version), 10 th										
		Edition, Pearson, 2015.										
2	Cay S Horstmann	Core Java: Volume 1 Fundamentals, Pearson Education, 12 th Edition,										
		2021.										

Course	Outcomes:
Upon co	ompletion of this course the student will be able to:
CO1.	Apply object-oriented concepts to develop programs in Java.
CO2.	Apply the concepts of Java programming language to develop applications.
CO3.	Desrcibe the usage of packages and interfaces of Java.
CO4.	Analyse the usage of basic multithreaded concept to implement parallel processing.
CO5.	Design and apply generics to handle real world problems.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

POs											PSOs				
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	3											1		
	CO ₂	2											1		
COs	CO ₃	2											1		
	CO4			2									1		
	CO5			3									1		
	AVG	2.5		2.5									1		

Game Programming-2D

(Engineering Science Course III - 4)

Contact Hours/ Week:	3	Credits:	3
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S3ISES04	SEE Marks:	50

Cours	e objectives:
This co	ourse will enable students to:
1.	Understand the fundamental concepts of game programming.
2.	Learn how to organize the objects in the games.
3.	Analyse the basics of vectors and physics involved in the gaming.
4.	Discuss how machines apply intelligence in gaming.
5.	Learn the graphics tools required to draw different sense of game.

UNIT I

Chapter 1: Game Programming Overview

Setting up a Development Environment: Microsoft Windows, Apple MACOS, Beyond the C++ Standard Library, The Game Loop and Game Class: Anatomy of a Frame, Implementing a Skeleton Game Class, Main Function, Basic Input Processing, Basic 2D Graphics: The Color Buffer, Double Buffering, Implementing Basic 2D Graphics, Drawing Walls, a Ball, and a Paddle, Updating the Game: Real Time and Game Time, Logic as a Function of Delta Time, Updating the Paddle's Position, Updating the Ball's Position, Game Project.

8 Hours

Batch: 2024

UNIT II

Chapter 2: Game Objects and 2D Graphics

Game Objects: Types of Game Objects, Game Object Models, Integrating Game Objects into the Game Loop, Sprites: Loading Image Files, Drawing Sprites, Animating Sprites, Scrolling Backgrounds, Game Project.

8 Hours

UNIT III

Chapter 3: Vectors and Basic Physics

Vectors: Getting a Vector between Two Points: Subtraction, Scaling a Vector: Scalar Multiplication, Combining Two Vectors: Addition, Determining a Distance: Length, Determining Directions: Unit Vectors and Normalization, Converting from an Angle to a Forward Vector, Converting a Forward Vector to an Angle: Arctangent, Determining the Angle between Two Vectors: Dot Product, Calculating a Normal: Cross Product.

Basic Movement: Creating a Basic MoveComponent Class, Creating an InputComponent Class.

8 Hours

UNIT IV

Chapter 3: Vectors and Basic Physics Cont..

Newtonian Physics: Linear Mechanics Overview, Computing Positions with Euler Integration, Issues with Variable Time Steps.

Basic Collision Detection: Circle-Versus-Circle Intersection, Creating a Circle Component Subclass, Game Project.

Chapter 4: Artificial Intelligence

Game Trees: Minimax, Handling Incomplete Game Trees, Alpha-Beta Pruning, Game Project.

UNIT V

Chapter 5: OpenGL

Initializing OpenGL: Setting Up the OpenGL Window, The OpenGL Context and Initializing GLEW, Rendering a Frame.

Triangle Basics: Polygons, Normalized Device Coordinates, Vertex and Index Buffers.

Shaders: Vertex Shaders, Fragment Shaders, Writing Basic Shaders, Loading Shaders, Drawing Triangles.

Transformation Basics: Object Space, World Space, Transforming to World Space.

Matrices and Transformations: Matrix Multiplication, Transforming a Point by Using a Matrix, Transforming to World Space, Revisited, Adding World Transforms to Actor, Transforming from World Space to Clip Space, Updating Shaders to Use Transform Matrices. Texture Mapping: Loading the Texture, Updating the Vertex Format, Updating the Shaders, Alpha Blending, Game Project.

8 Hours

Batch: 2024

TE	XT BOOKS	
1	Sanjay Madhav	Game Programming in C++: Creating 3D Games, Addison-
		Wesley Professional, 2018.

Rl	EFERENCE BOOKS	
1	Mike McShaffry and David	Game Coding Complete, 4th Edition, Course Technology
	Graham	PTR: Cengage Learning, 2013.

Course	Course Outcomes:					
Upon co	empletion of this course the student will be able to:					
CO1.	1. Describe the basic concepts of game programming.					
CO2.	Apply 2D graphics to develop games.					
CO3.	Apply essentials of vectors and physics to implement games.					
CO4.	Solve game problems using artificial intelligence algorithms.					
CO5.	Develop 2D images or scenes required for the game using OpenGL.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

	POs PSOs							S							
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO ₁	3												3	
	CO ₂	3												3	
COs	CO ₃	3	2											3	
	CO4	3	2											3	
	CO5	3	2											3	
AV	G	3	2											3	

Social Connect and Responsibilities

Contact Hours/ Week:	0:0:2:0	Credits:	1
Total Lecture Hours:	26	CIE Marks:	50
Sub. Code:	SHS01	SEE Marks:	50

Course objectives:

This course will enable students to:

- 1. Do a deep drive into societal challenges being addressed by NGO(s), social enterprises & The government and build solutions to alleviate these complex social problems through immersion, design & technology.
- 2. Provide a formal platform for students to communicate and connect with their surroundings.
- 3. Create of a responsible connection with society.

Contents: The course is mainly activity-based that will offer a set of activities for the student that enables them to connect with fellow human beings, nature, society, and the world at large. The course will engage students in interactive sessions, reading groups and semester-long activities conducted by faculty mentors. The followingset of activities planned for the course have been listed:

UNIT I

Plantation and adoption of a tree: Plantation of a tree by Miyawaki Method that will be adopted by entire semester by a group of students. They will also make an excerpt either as a documentary or a photoblog describing the plant's origin, its usage in daily life, and its appearance in folklore and literature.

6 Hours

Batch: 2024

UNIT II

Heritage walk and crafts corner: Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photoblog and documentary on evolution and practice of various craft forms.

6 Hours

UNIT III

Organic farming: Definition of organic farming, Organically grown crops in India, Differentiate between conventional farming and organic farming, Necessity of organic farming, Key characteristics of organic farming, Four principles of organic farming(principle of Health, principle of ecology, principle of fairness and principle of care), Types of organic farming: 1) Pure organic farming, 2) Integrated farming (Integrated nutrient management and Integrated pest management), objectives of organic farming, benefits of organic farming, Basic steps in organic farming and limitations of organic farming.

4 Hours

UNIT IV

Water Conservation: Global Water Scarcity - Global water crisis and its implications; Rainwater Harvesting - Concept and benefits of rainwater harvesting; Water Audit - An approach to water conservation; Efficient Water Use - Optimizing water consumption in daily life.

6 Hours

UNIT V

Food Walk City's culinary practices, food lore, and indigenous materials of the region used in cooking.

Course O	Course Outcomes:					
Upon completion of this course the student will be able to:						
CO1.	Understand social responsibility.					
CO2.	Practice sustainability and creativity.					
CO3.	Showcase planning and organizational skills.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

							POs	}						PSO s	5
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	3	2											3	
COs	CO ₂	3												3	
	CO3	3	2											3	
AV	G	3	2											3	

Introduction to Blender Tool: Animation and 3D Creation

Batch: 2024

(Ability Enhancement Course III-1)

Contact Hours/ Week:	2P	Credits:	1
Total Practical Hours:	26	CIE Marks:	50
Sub. Code:	S3ISA01	SEE Marks :	50

Cour	Course objectives:							
This	This course will enable students to:							
1.	Understand the concept of Blender Software tool.							
2.	Create an animation required for the applications.							
3.	Design 3D views by applying Texture, Rendering, and Lighting source for an image.							
4.	Learn MPEG GIF format to create a movie.							

Perform the following using Blender tool:

- 1. Set up a screen with four viewports using a top, front, side and camera or perspective views and perform the following operations:
 - i. Zooming
 - ii. Changing window types
 - iii. Centering the view on a certain object
 - iv. Switching views (top, front, side, camera, free-rotate)
 - v. Opening and closing the Tool Shelf and
 - vi. Transform Panel
- 2. Create a sculpture using at least 1 of every type of mesh found in the Add-Mesh menu (do not use grid or circle). Remember to make sure you are in Object Mode before creating a new mesh. Use a plane for the ground and scale it large. Divide your 3D window into two so you can have one working view and one camera view. Use the RMB to select objects on the screen.
- 3. Create an object and perform the joining/separating meshes and boolean operations.
- 4. Develop a nice landscape scene using Landscape and Lighthouse of the Blender.
- 5. Create a 3D cloud for the background.
- 6. Apply the lighting and cameras concept that bounces off other objects, like real life on an object/s.
- 7. Create your own MPEG movie file.

TEXT BOOKS						
1 James Chronister	Blender Basics Classroom Tutorial, 4 th Edition, 2017.					

RI	EFERENCE BOOKS						
1	John M Blain	An Introduction to Blender 3D - A Book For Beginners, 2011					
2.	2. Blender 3.2 Reference Manual, https://docs.blender.org/manual/en/latest/						

Course	Course Outcomes:						
Upon co	Upon completion of this course the student will be able to:						
CO1.	Describe the fundamental concepts of Blender tool to create 2D or 3D images.						
CO2.	Apply blender to create and edit objects required for images.						
CO3.	Design an animation for the applications.						
CO4.	Design the objects using Texture, Rendering, and Lighting source for an image.						
CO5.	Apply MPEG concept to create movies.						

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

		POs									PSOs				
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	3												3	
	CO ₂	3												3	
COs	CO ₃	3	2											3	
	CO4	3												3	
	CO5	3	2											3	
AVG		3	2											3	

Documentation: MS Office and Latex

(Ability Enhancement Course III-2)

Contact Hours/ Week:	2P	Credits:	1
Total Practical Hours:	26	CIE Marks:	50
Sub. Code:	S3ISA02	SEE Marks:	50

Course objectives:								
This course will enable students to:								
1.	1. Create a professional quality MS Word document.							
2.	Understand and use Cell computation functions and Formulas using Excel and create							
	visible charts and Tables.							
3.	Learn to create presentations using MS PowerPoint.							
4.	Learn to create reports or scientific documents using Latex.							

UNIT I

MS WORD: Text Basics, Text Formatting and saving file, Working with Objects, Header & Footers, working with bullets and numbered lists, Tables, Styles and Content.

6 Hours

Batch: 2024

UNIT II

MS WORD: Merging Documents, Sharing and Maintaining Document, Proofing the document, Printing.

MS EXCEL: Introduction to Excel, Formatting excel work book, Perform Calculations with Functions, Sort and Filter Data with Excel, Create Effective Charts to Present Data Visually.

6 Hours

UNIT III

MS EXCEL: Analyze Data Using Pivot Tables and Pivot Charts, Protecting and Sharing the work book, Use Macros to Automate Tasks.

MS POWERPOINT: Setting Up PowerPoint Environment, creating slides and applying themes, working with bullets and numbering, Working with Objects.

5 Hours

UNIT IV

MS POWERPOINT: Hyperlinks and Action Buttons, Using SmartArt and Tables, Animation and Slide Transition, Using slide Master, Slide show option.

4 Hours

UNIT V

Introduction to Latex: Installation of Latex and supporting tools, Formatting text matter, Creating tables, figures and graphs. Handling mathematical equations and symbols, preparation of Journal article, Preparation of report/thesis.

TEXT BOOKS									
1	Kumar Bittu	Mastering MS Office, V and S Publishers, 2020.							
2	Dr. Sachin Vashisth and Hari Kishan Bhardwaj	Introduction to LATEX and HTML, Shivalik Prakashan, Delhi-2017.							

Rl	REFERENCE BOOKS								
1	Lisa A. Bucki, John Walkenbach, Faithe Wempen	Microsoft Office 2013 Bible, Wiley Publishers, 2013.							
2	Firuza Karmali Aibara	A Short Introduction to Latex: A Book for Beginners, Atlantic Publishers and Distributors, 2019.							

Course	Course Outcomes:						
Upon co	Upon completion of this course the student will be able to:						
CO1. Describe the basics of the documentation using MS Word.							
CO2.	Create excel sheets, perform computations, represent the results in graphical forms.						
CO3.	Apply power point concepts of animation, narration, and images to create presentation.						
CO4.	Describe handlings of latex tables, figures, equations and graphs to create document.						
CO5.	Create journal articles and newsletters using latex.						

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs										PSOs				
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO ₁	3												3	
	CO ₂	3												3	
COs	CO ₃	3	2											3	
	CO4	3												3	
	CO5	3	2											3	
AV	G	3	2											3	

UNIX and SHELL Programming

Batch: 2024

(Ability Enhancement Course III -3)

Contact Hours/Week:	2P	Credits:	1.0
Total Practical Hours:	26	CIE Marks:	50
Course Code:	S3ISA03	SEE Marks:	50

Course objectives:								
This course will enable students to:								
1.	Describe the architecture of Unix Operating System and demonstrate various UNIX							
	commands along with their options and arguments.							
2.	Apply suitable commands and filters for file processing.							
3.	3. Solve Text processing problems using Regular Expressions.							
4. Develop shell scripts to solve given problems.								

List of Problems

- 1. Introduction to Unix Operating System and demonstrate the basic general shell commands such as date, cal, who, uname, echo, bc, man, history, exit.
 - Display the time in GMT(Greenwich Mean Time)/UTC(Coordinated Universal Time) time zone.
 - Display the calendar of the complete current year with the current date highlighted.
 - Display list of users logged in to system.
 - Display all system information such as the kernel name, hostname, kernel version, operating system.
 - Display a string on the terminal.
- 2. Illustrate the basic directory commands like pwd, mkdir, cd, rmdir.
 - Create directories with name dir1, dir2, dir3 in root directory
 - Create directories d11, d12 under dir1 directory
 - Create directories d21, d22 under dir2 directory
 - Create files f11, f12 under dir1 directory
 - Create files f31, f32, file33 under dir3 directory
 - Navigate to directory dir3 and create folder d31 and files f31, f32
 - Demonstrate navigation from one directory to other using absolute path and relative path
- 3. Understand the basic file commands like cat, cp, mv, rm, ls, wc, cmp, chmod.
 - To view multiple files
 - Find out number of lines, word count, byte and characters count in a file.
 - Read and write file permission for Owner, and Read-only for the group and other.
 - Change the group ownership of a file or directory.
 - Compare between two files and report the location of the first mismatch.
- 4. Query a data file using filter commands in UNIX such as head, tail, cut, tr, nl, pr, join.
 - To view the first 20 lines of a file named "example.txt".
 - To view the last 26 lines of a file named "example1.txt".
 - Compare the ends of multiple files.
 - To print the version number of the command.
 - Combine the contents of these two files.
 - To convert characters from lower case to upper case.
- 5. Search for a regular expression in a file using grep, sed command.
 - Find the number of lines that matches the given string.

- Display the lines that are not matched with the specified search string.
- Match the lines which start with the given string.
- Match the lines which end with the given string.
- Replaces the word "unix" with "linux" in the file.
- Replace the first, second occurrence of a pattern in a line.
- 6. Learn various features and controls of VI editor like edit commands, navigation commands, and the ex-mode.

- Opening an existing file with `file_name` = jayesh.
- Copy lines or words from one place and paste them in another place.
- Search some text for the string "Seeksforseeks".
- Delete the lines from 1 to 5.
- Delete the lines from present cursor position to 3 lines.
- 7. Understand shell programming and the conditional statements in it.
 - Conditional statement to check whether two numbers are equal or not equal.
 - Conditional statement to check whether given number is even or odd.
- 8. Application of multi way branching in shell programming.
 - Given the car name, its headquarters address is to be given.
 - Design a simple calculator to perform basic arithmetic operations.
- 9. Demonstration of numeric and string comparison in shell programming.
 - Compare the given numbers are equal or not.
 - Compare the strings are equal or not.
- 10. Illustrate the different testing and loops in shell programming.
 - Test the validity of a command.
 - Check the type of file and the permissions related to a file.
 - Read a file with a for loop.
 - Read only a particular part of a file while loop.

TEXT BOOKS	<u> </u>		
1. Sumitabha Das	Unix- Concepts and Ap	plications, 4 th Edition,	Tata McGraw-Hill, 2017.

Course	Outcomes:						
Upon co	ompletion of this course the student will be able to:						
CO1:	Analyze the role of various components in the architecture of Unix Operating System and use various UNIX commands to interact with the operating system.						
CO2:	Design solutions for Text processing problems using Regular Expression tools like grep and sed.						
CO3:	Create files using vi editor and perform different editing operations.						
CO4:	Develop shell scripts to automate tasks on a computer.						

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

POs													PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
COs	CO ₁	1													1
	CO ₂	1	2	2											1
	CO ₃	1	2												1
	CO4		2	3											1
	AVG	1	2	2.5											1

OF IV SEMESTER B.E.

INFROMATION SCIENCE AND ENGINEERING FOR THE A.Y: 2025-26

Batch: 2024

SCHEME OF TEACHING AND EXAMINATION: IV Semester

Batch: 2024

				Teaching / Teaching hrs./week					Examination				
Sl. No.	Course and Course Code		Course Title Pa		Lecture	Tutorial	Practical/ Drawing	Self-Study Component	Duration	CIE	SEE	Total	Credits
- 1.00				Dept.	L	T	P	S	in hrs.	Marks	Marks	Marks	
1.	PCC	S4IS01	Operating System	IS	3	0	0	S	3	50	50	100	3
2.	IPCC	S4ISI01	Design and Analysis of Algorithms (Integrated)	IS	3	0	2	S	3	50	50	100	4
3.	IPCC	S4ISI02	ARM Processor and Microcontroller (Integrated)	IS	3	0	2		3	50	50	100	4
4.	PCCL	S4ISL02	Data Visualization Laboratory	IS	0	0	2		3	50	50	100	1
5.	ESC	S4ISSCXX	ESC/ETC/PLC	IS	3	0	0		3	50	50	100	3
6.	BSC	S4CCA01	Biology for Engineers (Board: BT)	BT	3	0	0		3	50	50	100	3
7.	UHV	SHS02	Universal Human Values Course (Board: IEM)	IEM	1	0	0		11/2	50	50	100	1
					If offered as Theory Course			1½					
8.	AEC/	S4ISAXX	Ability Enhancement Course/ Skill Enhancement Course – IV	$\begin{array}{c c} IS & \hline & 1 \\ \hline & If of I \end{array}$	1	0	0		1/2	50	50	100	1
0.	SEC	JHISAAA	Skill Enhancement Course – IV		If offered as Integrated Course			11/2	30	100	1		
					0	0	2		1/2				
		SMC01	National Service Scheme (NSS)	NSS CO									
9.	NCMC	SMC02	Physical Education (PE) (Sports and Athletics)	PED	0	0	2			100	=.	100	0
	SMC03		Yoga	PED									
	•		Total							500	400	900	20
	AAP AICTE Activity Points (Applicable for both Regular and Lateral Entry students)			40 hours	communit	y service to	o be docume	ented and pr	oduced for	the examin	nation		

Note: PCC: Professional Core Course, IPCC: Integrated Professional Core Course, PCCL: Professional Core Course laboratory,

UHV: Universal Human Value Course, NCMC: Non Credit Mandatory Course, AEC: Ability Enhancement Course, SEC: Skill Enhancement Course,

ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course

L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation.

Engineering Science Course (ESC/ETC/PLC) (Offered by the Department)

S4ISES01	Discrete Mathematical Structures	S4ISES02	Statistical Computation				
S4ISES03	Automata Theory and Compiler Design	S4ISES04	Game Programming-3D				
	Ability Enhancement Course – IV (Offered by the Department)						
S4ISA01	Swift Programming	S4ISA02	Mobile Application Development				
		S4ISA04	Natural Language Processing				

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practical of the same course. Credit for IPCC can be 04 and its Teaching–Learning hours (L:T:P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering (B.E.) 2022-23 may please be referred.

National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first Week of III semesters. Activities shall be carried out between III semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the Degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of Degree.

software.

Operating Systems

	<u> </u>		
Contact Hours/Week:	3	Credits:	3.0
Total Lecture Hours:	40	CIE Marks:	50
Total Tutorial Hours:	00	SEE Marks:	50
Course Code:	S4IS01		

Cour	Course objectives:						
This course will enable students to:							
1.	Define fundamental OS abstractions such as processes, threads, files etc.						
2.	Visualize the intricate relationship between an operating system and its underlying						
	hardware.						
3.	Explain scheduling algorithms and deadlock detection algorithms.						
4.	Apply the principles of concurrency and synchronization, to write concurrent programs/						

5. Discuss the importance of memory management strategies.

UNIT I

Introduction: What operating systems do - User view, System view, Defining operating systems, Operating System Structure, Operating System Operations - Dual mode and multimode operation, Timer, Process Management; Memory Management; Storage Management; Protection and Security. [Textbook 1:chapter 1.1, 1.4 to 1.9]

System Structures: Operating System Services; System calls; Types of system calls; System programs; Operating System Structure –Simple structure, Layered approach, Micro kernels, Modules [Textbook 1: Chapter 2.1, 2.3 to 2.5, 2.7.4]

Self study: Hybrid Systems – Mac OS X, iOS, Android.[Textbook 1: Chapter 2.7.5]

8 Hours

Batch: 2024

UNIT II

Process: Process concept, Process state, Process control block, Process scheduling, Scheduling queues, Schedulers, Context switch, Operations on processes – Process creation and termination, Inter-process communication, Shared memory and message passing systems. [Textbook 1: Chapter 3.1 to 3.4]

Process Management: Basic concepts, CPU scheduler, Preemptive and non-preemptive scheduling, Scheduling criteria, Scheduling algorithms – FCFS, SJF, Priority and Round robin scheduling. [Textbook 1: Chapter 6.1 to 6.3.4]

Self-Study: Multi-level and multilevel feedback queue scheduling.[Textbook 1: Chapter 6.3.5]

8 Hours

UNIT III

Threads: Overview, Benefits, Multi core Programming, Types of parallelism, Multi-threading models. [Textbook 1: Chapters 4.1to 4.3]

Process Synchronization: Background, The Critical section problem, Peterson's solution, Synchronization hardware, Mutex locks, Semaphores, Classic problems of synchronization, Bounded buffer problem. [Textbook 1: Chapter 5.1 to 5.7.1]

Self-Study: Readers writer's problem, Dining philosopher's problem. [Textbook 1:Chapter 5.7.2, 5.7.3]

8 Hours

UNIT IV

Deadlocks: System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection and recovery from deadlock.

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

[Textbook 1:7.1-7.7]

Memory Management: Background, Basic hardware, Address binding, Logical and physical address, swapping, Dynamic loading and linking. [Textbook 1: Chapter 8.1, 8.2]

8 Hours

Batch: 2024

UNIT V

Memory Management: Contiguous memory allocation, Segmentation, Paging. [Textbook 1: 8.3, 8.4, 8.5]

Virtual Memory Management: Basic concepts, Demand paging, Copy-on-write, Page replacement – FIFO, LRU, Optimal. [Textbook 1:9.1-9.4]

Self-Study: Structure of page table, Hierarchical paging, Hashed paging, Inverted paging. [Textbook 1: Chapter 8.6]

8 Hours

NOTE: Self-study topics are assessed only in CIE-Quizzes/ Assignment

TEX	KT BOOKS		
1	Abraham	Silberschatz,	Operating System Concepts Wiley-India, 9th Edition, 2013.
	Peter Baer	Galvin, Greg	
	Gagne		

REFERENCE BOOKS							
1	D.M Dhamdhere	Operating System - A Concept Based Approach, Tata McGraw-					
		Hill, 2nd Edition, 2002.					
2.	P.C.P. Bhatt	Operating Systems, PHI 4th Edition, 2013.					

Course Outcomes:

Upon completion of this course the student will be able to:

- **CO1. Describe** the services, functions and structure of different operating systems.
- **CO2. Apply and analyze** appropriate scheduling algorithm for process selection and execution.
- **CO3. Apply** process synchronization techniques to avoid race conditions.
- **CO4. Apply** various deadlock prevention, avoidance, detection and recovery mechanisms to resolve deadlock situations.
- **CO5. Analyze** the performance of various memory management techniques and page replacement algorithms.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

		POs							PSOs						
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	3											3		
	CO ₂		3										3		
COs	CO ₃		2										2		
	CO ₄		3										3		
	CO5	·	2										2		
	AVG	3	3										3		

Design and Analysis of Algorithms (Integrated Course)

Contact Hours/Week:	3L + 2P	Credits:	4.0
Total Lecture Hours:	40	CIE Marks:	50
Total Practical Hours:	26	SEE Marks:	50
Course Code:	S4ISI01		

	se objectives: course will enable students to:						
1.	Understand fundamentals of design and analysis of algorithms.						
2.	Analyze the running time of the basic algorithms and prove their correctness.						
3.	Compare the running time of different sorting and searching algorithms.						
4.	Apply transform and conquer, dynamic programming and greedy design techniques to solve problems.						
5.	Understand the fundamental principles of space-and-time tradeoffs and backtracking techniques.						

UNIT I

Introduction: Notion of algorithm, Fundamentals of Algorithmic Problem Solving, Fundamentals of the Analysis of Algorithm Efficiency: Analysis frame work, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive and Recursive Algorithms. [Chapters: 1.1, 1.2, 2.1-2.4]

08 Hours

Batch: 2024

UNIT II

Brute force: Selection Sort and Bubble Sort, Sequential Search and Brute-Force String Matching. Divide and Conquer: Mergesort, Quicksort, Binary Search. [Chapters: 3.1, 3.2, 4.1-4.3]

08 Hours

UNIT III

Decrease and conquer: Insertion Sort, Depth First Search, Breadth First Search, Topological Sorting, Algorithms for Generating Combinatorial Objects.

Transform and conquer: Presorting, Balanced Search Trees: AVL Tree, Heaps and Heapsort. [Chapters: 5.1 - 5.4, 6.1, 6.3 (only AVL Trees), 6.4]

08 Hours

UNIT IV

Dynamic programming: Computing a Binomial Coefficient, Warshall's and Floyd's Algorithms, The Knapsack Problem.

Greedy Technique: Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm. [Chapters: 8.1, 8.2, 8.4, 9.1-9.3]

08 Hours

UNIT V

Space And Time Tradeoffs: Sorting by Counting, Input Enhancement in String Matching: Horspool's Algorithm.

Limitations Of Algorithm Power: P, NP and NP-Complete Problems.

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

Coping with the Limitations	s of Algorithm	Power:	Backtracking:	N-Queens,	Hamiltonian
Circuit Problem, Subset-Sum	Problem. [Chapt	ers: 7.1,	7.2, 10.3, 11.1]		
·					AA TT

08 Hours

Batch: 2024

Self-Study Component:

The following topics must be studied by the students:

- 1. Algorithms for Generating Combinatorial Objects.
- 2. Limitations of Algorithm Power: P, NP and NP-Complete Problems

NOTE: Self-study topics are assessed only in CIE-Quizzes/ Assignments

TEXT BOOKS:

1.	Anany Levitin.	Introduction to The Design & Analysis of Algorithms. 2 nd Edition,
		Pearson Education. 2011.

REFERENCE BOOKS:

Ī	1.	Ellis Horowitz,	Fundamentals of Computer Algorithms, University Press Pvt. Ltd,
		Satraj Sahni and	2 nd Edition, 2009.
		Rajasekharan.	

SI. No.	List of Lab Programs
1	Programs on Brute-Force technique.
	a) Develop a recursive program to implement Linear Search.
	b) Given a short text document or a sentence and a keyword, implement a program that searches for the first occurrence of the keyword within the given document.
2	Programs on Divide and Conquer technique.
	a) Develop a program to implement Merge Sort.
	b) Develop a program to implement Quick Sort.
3	Programs on Decrease and Conquer technique.
	a) Develop a program to demonstrate Topological ordering of vertices using source
	removal method for a given Directed Acyclic Graph.
	 b) Develop a program to implement Insertion sort algorithm to sort a given set of elements.
	 c) Develop a program to print all nodes reachable from a given node in a digraph using Breadth First Search algorithm.
	 d) Develop a program to check whether a given graph is connected or not using Depth First Search algorithm.
4	Program on Transform and Conquer technique: Develop a program for sorting an array of N
	elements using Heap sort algorithm.
5	Programs on Dynamic Programming.
	a) Develop a program to implement 0/1 Knapsack problem.
	b) Develop a program to compute the transitive closure of a given graph using Warshall's algorithm.
	c) Develop a program to implement all pair shortest path problem using Floyd's algorithm.

	d) Develop a program to find the Binomial Coefficient.
6	 Programs on Greedy Technique. a) Develop a program to implement Prim's algorithm to find minimum cost spanning tree of a given weighted graph. b) Develop a program to implement Kruskal's algorithm to find minimum cost spanning tree of a given weighted graph.
7	Programs on Space and Time trade-off: Develop a program to demonstrate string matching using Horspool's algorithm.
8	Programs on Backtracking. a) Write a program to find a subset of a given set. $S = \{s_1, s_2, \ldots, s_n\} \text{ of n positive integers whose sum is equal to a given positive integer d. For example, if S= \{1, 2, 5, 6, 8\} \text{ and } d = 9 \text{ there are two}$
	solutions {1,2,6} and {1,8}. b) Write a program to solve N-Queen's problem.

Course	Outcomes:			
Upon co	Upon completion of this course, the student will be able to:			
CO1:	Describe the fundamental principles of algorithm analysis and design and apply them			
	in specific instances.			
CO2:	Apply design techniques such as brute force and divide-and-conquer to solve searching and sorting problems.			
CO3 :	Apply design techniques such as decrease and conquer, transform and conquer to provide optimal solutions.			
CO4:	Apply dynamic programming and greedy techniques to find optimal solutions to given problems.			
CO5:	Describe the fundamental principles of space-and-time trade-offs and apply the design techniques such as backtracking to solve N-Queens and subset sum problems.			

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs							PSOs							
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	2												2	
	CO ₂	2												2	
COs	CO ₃			2										2	
	CO4		2											2	
	CO5		2											2	
	AVG	2	2	2										2	

ARM Processor and Microcontroller

(Integrated Course)

Contact Hours/ Week:	3T + 2P	Credits:	4.0
Total Lecture Hours:	40	CIE Marks:	50
Total Practical Hours:	26	SEE Marks:	50
Sub. Code:	S4ISI02		

:	rse objectives: course will enable students to:
1.	Learn the concept of architecture and programming of advanced embedded microcontrollers.
2.	Describe ARM family of microcontrollers that are widely used in design of real time embedded systems.
3.	Write Embedded C programs of LPC2148 for GPIO, ADC, DAC, UART, LCD, Timers and etc.
4.	Learn the different embedded system components.

UNIT I

Chapter 1-Embedded System Components: Embedded v/s General computing system, Classification of Embedded systems, Major applications and purpose of Embedded systems, Core of an Embedded System including all types of Processors, Controller and Memory.

Chapter 2-Arm Embedded Systems: The RISC Design Philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software.

8 Hours

Batch: 2024

UNIT II

Chapter 3-Arm Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and Vector Table, Core Extensions, Architecture Revisions, ARM Processor Families, LPC2148 Microcontroller Architecture, Memory Mapping, Register Description.

8 Hours

UNIT III

Chapter 4-Introduction To The Arm Instructions Set: Data Processing Instructions and examples, Branch Instructions and examples, Load-Store Instructions and examples, Software Interrupt Instructions and examples, Program Status Register Instruction and example programs. Addition, Multiplication, Division and Subtraction of 16, 32-bit data, Looping, Conditional programs like sum of memory elements, Loading Constants, Conditional Execution, and example programs.

8 Hours

UNIT IV

Chapter 5: Interfacing Sensors, Actuators, GPIO, LED interfacing and programming in C, 7 segment display interfacing and C program, stepper motor interfacing, Keyboard interfacing, Push button switch interfacing and programming in C.

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

0	ITarra
- 73	Hours

UNIT V

Interfacing Continued... Data Conversions (ADC, DAC), LCD interfacing and C program, Timers, Counters, Communication Protocols: UART, CAN Programs using C.

8 Hours

TEXT BOOKS

- Andrew N. Sloss, Dominic Symes, Chris Wright, ARM Systems Developer's Guide Designing and Optimizing System Software, Morgan Kaufmann Publishers, Elsevier Inc, 2004 (Chapters 1, 2, 3)
- Shibu K V, Introduction to Embedded Systems, 2nd Edition, Tata McGraw Hill Education Private Limited, 2017. (Chapters 1 and 2 selected topics)
- 3 LPC214x User Manual –http://www.keil.com/dd/docs/datashts/philips/ (LPC2148, GPIO, Registers, Embedded components selected)

REFERENCE BOOKS

- Steve Furber, ARM System on Chip Architecture, 2nd Edition, Pearson Education Limited, 2000.
- William Hohl, Christopher Hinds, ARM Assembly Language Fundamentals and Techniques, Second Edition, CRC Press, 2015.
- 3 Gibson, ARM Assembly Language an Introduction, 2nd Edition, 2007.

List of Problems for laboratory:

- 1. Write an ALP to multiply two binary numbers.
- 2. Write an ALP to find the sum of first 10 integer numbers.
- 3. Write an ALP to find factorial of a number.
- 4. Write an ALP to add an array of numbers and store the result in internal RAM.
- 5. Write an ALP to find the square of a number (1 to 10) using look-up table.
- 6. Write an ALP to find the largest/smallest number in an array of 32 numbers.
- 7. Write an ALP to arrange a series of 32-bit numbers in ascending/descending order.
- 8. Write an ALP to count the number of ones and zeros in two consecutive memory locations.

Conduct the following experiments on LPC2148 evaluation board using evaluation version of Embedded C and Keil μ vision tool/compiler.

- 9. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
- 10. Interface a DAC and generate the following waveforms:
 - a. Triangular
- b. Square
- c. Sin wave
- 11. Interface a 3x8 keyboard and display the key pressed on an LCD.
- 12. Determine Digital output for a given Analog input using Internal ADC of ARM controller.
- 13. Demonstrate the use of a Logic controller interface to toggle an LED On/Off.
- 14. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between the digits.
- 15. Display "Hello World" message using Internal UART.

Course C	Outcomes:
Upon con	inpletion of this course the student will be able to:
CO1.	Describe the fundamental components of Embedded Systems.
CO2.	Describe the ARM processor architecture and its family.
CO3.	Develop assembly language programs to perform specific tasks using ARM instructions.
CO4.	Design and develop embedded C programs to interface external hardware with LPC214x microcontroller.
CO5.	Design and develop the solutions for a problem using embedded system and demonstrate.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs							PSOs							
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	3											1		
	CO ₂	2											1		
COs	CO ₃	2				1							1		
	CO ₄	3		2		1							1		
	CO5	3		2		1							1		
	AVG	3		2		1							1		

Data Visualization Laboratory

Batch: 2024

		<u> </u>	
Contact Hours/Week:	2P	Credits:	1.0
Total Lecture Hours:		CIE Marks:	50
Total Practical Hours:	26	SEE Marks:	50
Course Code:	S4ISL02		

Cou	Course objectives:					
This	This course will enable students to:					
1.	Understand different ways of representation of data.					
2.	Learn the usage of different Data visualization tools.					
3.	Design and create data visualization plots.					
4.	Conduct exploratory data analysis using data visualization.					

List of Programs for the lab:

	ir rograms for the lab:
1.	Introduction to R Programming: Overview of R Programming. Introduction to data visualization, Downloading and installing, Help Function, Viewing documentation,
	General issues in R, Package Management.
2.	Write a R-program for the following
2.	a) Accept a sentence and find the number of words, digits, uppercase letters and lowercase
	letters.
	b) Write R-program to find the string similarity between two given strings.
3.	Write R program for the following
	a)To demonstrate Subsetting.
	b)Create a Student data frame containing Student-name, Marks, Semester, Find Sum, and
	average Marks of each student in respective subjects.
4.	Write a R Program to Create an Students DataFrame containing vectors (Sid,S-name) do
	the following operations on Students DataFrame.
	a) Insert multiple students data in Students DataFrame
	b) Add address column to Students DataFrame
	c) Remove empty rows from R DataFrame
	d) Merge Two DataFrames of same students based on Id.
5.	Write a R program to display bar chart, horizontal bar chart and pie chart by using number of
	books written by author as a vector. Write the analysis for the executed program.
6.	Exploring the data before visualization: Exploring Datasets Available in the R Base Package.
	a) Write a program to display built-in Datasets in R.
	b) Write a program to display information of any 5 built-in Datasets in R.
7.	Create different plots/charts using Tableau. Write the analysis for the executed program.
8.	Create an operational dashboard and analytical dashboard using Tableau. Write the
	analysis for the executed program.
9.	Create different plots/charts using looker. Write the analysis for the executed program.
10.	Download the Weather forecasting dataset and analyze using power BI.
11.	a) Create the Correlation HeatMap using ggplot2 and write the analysis for the correlated
	heatmap plot.
	b) Create the Interactive HeatMap using ggplot2 and write the analysis for the interactive
	heatmap plot.
12.	a) Create dendrograms using R and write the analysis for the executed program.
	b) Create Cluster dendrograms using R and write the analysis for the executed program.

Course Outcomes: Upon completion of this course the student will be able to:								
CO1.	Design and generate different types of plots for various types of data sets.							
CO2.	Apply and Analyze appropriate data visualization methods for real-time application data.							
CO3.	Analyze different data visualization tools to various domains of data analytics.							
CO4.	Evaluate the effectiveness of different data visualization tools.							

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	PO										PSO				
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	2				3									2
COa	CO2	2	2												2
COs	CO3					3									2
	CO4					2									2
	AVG	2	2			3									2

Discrete Mathematical Structures (Engineering Science Course-1)

Contact Hours/ Week:	3 (L)	Credits:	3
Total Lecture Hours:	39	CIE Marks:	50
Total Tutorial Hours:	00	SEE Marks:	50
Sub Code:	S4ISES01	Semester:	IV

Prerequisites: Set Theory.

	Course objectives: This course will enable students to:							
1.	Illustrate the domain and range of a relation and their properties.							
2.	Explain the basics of groups and its associated concepts.							
3.	Demonstrate the theory of Boolean algebra and normalize a switching circuit.							
4.	Identify types of graphs, outline properties of graphs							
5	Illustrate tree structure and its properties.							

UNIT-I

Relations and Function: Relations, Properties of Relations, Computer Recognition- Zero-One Matrices and Digraphs, Partial order relation -Poset and Hasse-Diagrams, Equivalence Relation and Partitions, Extremal elements of a Poset, Lattice.

8 Hours

Batch: 2024

UNIT-II

Groups: Binary Operations and Properties, Definition of a Group, Examples and Elementary properties, Abelian Group, Homomorphism, Isomorphism and Cyclic Groups, Cosets and Lagrange's Thoerem, Normal subgroups.

8 Hours

UNIT-III

Boolean Algebra and Switching Functions: Introduction, Definition of Boolean algebra and Boolean function, Laws of Boolean functions and problems Switching functions: Disjunctive and conjunctive normal forms. Structure of Boolean Algebra

7 Hours

UNIT-IV

Introduction to Graph Theory: Definitions and Examples, Subgraphs, Complements, and Graph Isomorphism, Vertex Degree, Euler Trails and Circuits, Planar Graphs, Hamilton Paths and Cycles.

8 Hours

UNIT-V

Graph Coloring and Trees: Graph Coloring, and Chromatic Polynomials. Trees: Definitions, Properties, and Examples, Rooted Trees, Trees and Sorting, Weighted Trees and Prefix Codes. Minimal spanning Tree, Transport Networks: Max-Flow Min-cut Theorem

8 Hours

TEXT BOOKS:

1. Ralph P. Grimaldi, "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education, 2012.

Batch: 2024

- 2. Bernard Kolman, Robert Busby and Sharon C. Ross, "Discrete Mathematical Structures", 6th edition, Pearson Education, 2012.
- 3. David M Burton, "Elementary Number Theory", 7th Edition, McGraw Hill Education, 2013.

REFERENCE BOOKS:

- 1. Kenneth H. Rosen, "Discrete Mathematical and its Applications", Tata-McGrawHill, 7th Edition-2011.
- 2. J.P.Tremblay and R. Manohar, "Discrete Mathematical Structures with Applications to computer science", Tata-McGraw Hill, 2010.
- 3. M. Ram Murthy and Jody Esmonde, "Problems in Algebraic number theory", Springer, 2006.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley Publications, 2015.

Course Outcomes:

Upon completion of this course the student will be able to:

- **CO1. Compute** zero-one matrix, composition of relations and draw Hasse diagram. (L3).
- **CO2. Apply** the concept of groups and subgroup to verify Lagrange's theorem. (L2).
- **CO3. Apply** the theory of Boolean algebra to minimize switching functions. (L3).
- **CO4. Recognize** types of graphs, outline properties of graphs, understand isomorphism and apply Graph theory tools in solving real world problems. (L2/L3).
- **CO5.** Colour the vertices/ edges of a graph, understand tree structure, its properties, importance of minimal spanning tree and hence the shortest path using algorithms.

Mapping of Course outcomes to Program outcomes

		PROGRAM OUTCOMES											
		1	2	3	4	5	6	7	8	9	10	11	12
	CO1	3											
CO	CO2	3											
	CO3	3	1										
	CO4	3											
	CO5	3											

Statistical Computation

(Engineering Science Course-2)

	` 0 0	,	
Contact Hours/Week:	3	Credits:	3
Total Lecture Hours:	40	CIE Marks:	50
Total Tutorial Hours:	-	SEE Marks:	50
Course Code:	S4ISE02		

Cou	Course objectives:							
This	This course will enable students to:							
1.	Define elements structure and variability.							
2.	Visualize the sampling criteria and hypothesis using different algorithms.							
3.	Explain regression and prediction techniques for computing.							
4.	Apply the principles of computing for regression, prediction and classifications.							

UNIT 1

EXPLORATORY ANALYSIS: Elements of Structured, Estimates of Location - Mean, Median, Mode, Outliers, Estimates of Variability- Standard Deviation, Z-Score, Frequency Table and Histograms, Correlation.

8 Hours

Batch: 2024

UNIT 2

DATA SAMPLING AND DISTRIBUTION: Normalization, Sampling Data-Simple Random sampling, Stratified, Cluster Sampling, Sampling Error/Bias. Bootstrapping, Central Limit Theorem, Confidence intervals, Normal distribution, Binomial distribution, Poisson distribution.

8 Hours

UNIT 3

HYPOTHESIS: A/B Testing, Hypothesis Tests- null, one-way, two-way, P-value, Type 1 & 2 errors, t-tests, multiple testing, degrees of freedom, ANOVA, Chi-Square Tests, Power and Sample Size.

8 Hours

UNIT 4

REGRESSION AND PREDICTION: Simple Linear Regression, Multiple Linear Regression, Confidence and Prediction Intervals, Categorical Variables, Multicollinearity, Polynomial Regression.

8 Hours

Batch: 2024

UNIT 5

CLASSIFICATION: Naive Bayes, Discriminant Analysis, Logistic Regression, Evaluating Classification Models, Strategies for Imbalanced Data.

8 Hours

TEXT BOOKS

1. Bruce, Peter, and Andrew Bruce. Practical statistics for data scientists: 50 essential concepts. "O'Reilly Media, Inc.", 2017.

REFERENCE BOOKS

- 1. Dodge, Yadolah, ed. Statistical data analysis and inference. Elsevier, 2014.
- 2. Ismay, Chester, and Albert Y. Kim. Statistical Inference via Data Science: A Modern Dive into R and the Tidyverse. CRC Press, 2019.

E BOOKS

1. https://leanpub.com/LittleInferenceBook

Course	Course Outcomes:								
Upon co	Upon completion of this course the student will be able to:								
CO 1.	Perform exploratory analysis on the datasets.								
CO 2.	Comprehend the various distribution and sampling.								
CO 3.	Perform Hypothesis Testing on datasets.								
CO 4.	Apply statistical inference for Regression.								
CO 5.	Apply statistical inference for Classification.								

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs											PSOs			
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	2				3									2
COa	CO2	2	2												2
COs	CO3					3									2
	CO4					2									2
	AVG	2	2			3									2

Automata Theory and Compiler Design

(Engineering Science Course-3)

Contact Hours/ Week:	3	Credits:	3.0
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S4ISES03	SEE Marks:	50

	objectives: urse will enable students to:
1.	Describe the concepts of automata theory, formal languages and compiler design.
2.	Identify different formal language classes like regular and context free, their relationships and lexical analysis of compiler.
3.	Design Context free grammars for different formal languages and explain the syntactic analysis of a compiler.
4.	Describe syntax directed translation phase of a compiler.
5.	Narrate the intermediate code generation and code generation phases of a compiler.

UNIT I

Introduction to Automata Theory: Central Concepts of Automata theory, Deterministic Finite Automata (DFA), Non- Deterministic Finite Automata (NFA), NFA to DFA Conversion, Minimization of DFA.

Introduction to Compiler Design: Language Processors, Phases of Compilers, Compiler Construction Tools.

8 Hours

Batch: 2024

UNIT II

Regular Expressions and Languages: Regular Expressions, Finite Automata and Regular Expressions.

Push Down Automata: Definition of the Pushdown Automata, The Languages of a PDA.

8 Hours

UNIT III

Context Free Grammars: Formal Definition of a Context Free Grammar, Derivations, Parse Trees, Ambiguity, Writing a Grammar: Elimination of Ambiguity, Elimination of Left Recursion, Left Factoring.

Lexical analysis Phase of compiler Design: The Role of Lexical Analyzer, Input Buffering, Specifications of Tokens, Recognition of Tokens.

9 Hours

UNIT IV

Syntax Analysis: The role of the Parser, Top-down Parsing, First and Follow, LL (1) Grammars, Non-Recursive Predictive Parsing, Error Recovery in Predictive Parsing. Bottom-up Parsing, Introduction to LR Parsing: Simple LR parser. More Powerful LR Parsers: Canonical LR (1) items, Constructing LR (1) set of items, Canonical LR (1) parse tables, Constructing LALR parsing tables.

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation order for SDDs, Applications of Syntax-Directed translation, Syntax-Directed Translation Schemes.

7 Hours

UNIT V

Intermediate Code Generation: Variants of syntax trees, Three-address code, Types and declarations, Translation of expressions, Type checking: Rules of Type Checking, Type Conversions, Control flow: Boolean Expressions, Short-Circuit Code, Flow of Control statements, Control Flow Translation of Boolean Expressions, Avoiding Redundant Gotos, Back patching: One pass Code generation Using backpatching, Backpatching for Boolean Expressions.

Code Generation: Issues in the Design of a Code Generator, Target Language, A Simple Code Generator.

8 Hours

Batch: 2024

TE	XT BOOKS	
1	John E Hopcroft, Rajeev	Introduction to Automata Theory, Languages and
	Motwani, Jeffrey D.	Computation, 3 rd Edition, Pearson Education India, 2011.
	Ullman	
2	Alfred V.Aho, Monica	Compilers Principles, Techniques and Tools, 2 nd Edition,
	S.Lam, Ravi Sethi, Jeffrey	Pearson Education India, 2013.
	D. Ullman	

Rl	REFERENCE BOOKS						
1	Elain Rich	"Automata, Computability and Complexity", 1 st Edition, Pearson Education, 2019.					
2	K.L.P Mishra, N Chandrashekaran	Theory of Computer Science, 3 rd Edition PHI,2012.					
3	Peter Linz	"An introduction to Formal Languages and Automata", 6 th Edition, NarosaPublishers,2013.					
4	K Muneeswaran	"Compiler Design", Oxford University Press 2013.					

Course	Course Outcomes:						
Upon c	Upon completion of this course the student will be able to:						
CO1.	Describe the fundamental core concepts in automata theory and Theory of						
	Computation.						
CO2.	Analyze lexical analyzers, parsers and code generators required for compilers.						
CO3.	Design Grammars and Automata (recognizers) for different language classes.						
CO4.	Analyze the fundamentals of compiler structures and Apply concepts of automata						
	theory and theory of computation to design compilers.						
CO5.	Design syntax directed computation models for problems in Automata theory and						

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

adapt such model in the field of compilers.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

			POs						PSOs							
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1		1											2		
	CO ₂			2										2		
COs	CO ₃			2										2		
	CO4			2										2		
	CO5			2										2		
AVG				2										2		

Game Programming-3D

(Engineering Science Course-4)

Contact Hours/ Week:	3	Credits:	3.0
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S4ISES04	SEE Marks:	50

1	e objectives:				
This co	This course will enable students to:				
1.	Understand the fundamental concepts of 3D graphics.				
2.	Explore different 3D models for gaming.				
3.	Describe the basics of 3D Meshes and Lighting involved in 3D gaming.				
4.	4. Learn to integrate audio in the gaming.				
5	5. Explore the different animation techniques.				

UNIT I

3D Graphics: The Actor Transform in 3D, Transform Matrices for 3D, Euler Angles, Quaternions, New Actor Transform in Action.

Loading 3D Models: Choosing a Model Format, Updating the Vertex Attributes, Loading a gpmesh File.

8 Hours

Batch: 2024

UNIT II

Drawing 3D Meshes: Transforming to Clip Space, Revisited, Out with the Painter's Algorithm, in with ZBuffering, The BasicMeshShader, The MeshComponent Class.

8 Hours

UNIT III

Lighting: Revisiting Vertex Attributes, Types of Lights, Phong Reflection Model, Implementing Lighting.

8 Hours

UNIT IV

3D Positional Audio: Setting Up a Basic Listener, Adding Positional Functionality to SoundEvent, Creating an AudioComponent to Associate Actors with Sound Events, The Listener in a Third-Person Game, The Doppler Effect.

8 Hours

UNIT V

Skeletal Animation: Foundations of Skeletal Animation, Skeletons and Poses, The Inverse Bind Pose Matrix, Animation Data, Skinning.

Implementing Skeletal Animation: Drawing with Skinning Vertex Attributes, Loading a Skeleton, Loading the Animation Data, The Skinning Vertex Shader, Updating Animations.

8 Hours

TE	TEXT BOOKS						
1	Sanjay Madhav	Game Programming in C++: Creating 3D Games, Addison-Wesley Professional, 2018.					

RI	REFERENCE BOOKS						
1	Mike	"MrMike"	Game Coding Complete, 4 th Edition, Course Technology PTR:				
	McShaffry David Gra		Cengage Learning, 2013.				

Course O	Course Outcomes:					
Upon con	Upon completion of this course the student will be able to:					
CO 1.	CO 1. Describe the fundamental concepts of 3D graphics.					
CO 2.	O 2. Integrate the audio effects in the gaming applications.					
CO 3.	CO 3. Create 3D mesh using inbuilt models and algorithms.					
CO 4.	CO 4. Apply different lighting models for games.					
CO 5.	CO 5. Create 3D animation based on the feedback.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

			POs						PSOs						
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1		1										2		
	CO ₂			2									2		
COs	CO ₃			2									2		
	CO4			2									2		
	CO5			2								2			
AV	G			2									2		

Biology for Engineers

Contact Hours/ Week:	3+0+0 (L+T+P)	Credits:	3.0
Total Lecture Hours:	40	CIE Marks:	50
Sub. Code:	S4CCA01	SEE Marks:	50

	e objectives: ourse will enable students:
1.	To familiarize the students with the basic biological concepts and their engineering applications.
2.	To enable the students with an understanding of biodesign principles to create novel devices and structures.
3.	To provide the students an appreciation of how biological systems can be re-designed as substitute products for natural systems.
4.	To motivate the students to develop interdisciplinary vision of biological engineering.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- Explanation via real life problem, situation modelling, and deliberation of solutions, handson sessions, reflective and questioning /inquiry-based teaching.
- Instructions with interactions in classroom lectures (physical/hybrid).
- Use of ICT tools, including YouTube videos, related MOOCs, AR/VR/MR tools.
- Flipped classroom sessions (~10% of the classes).
- Industrial visits, Guests talks and competitions for learning beyond the syllabus.
- Students' participation through audio-video based content creation for the syllabus (as assignments).
- Use of gamification tools (in both physical/hybrid classes) for creative learning outcomes.
- Students' seminars (in solo or group) /oral presentations.

UNIT I

Introduction To Biology: The cell: the basic unit of life, Structure and functions of a cell. The Plant Cell and animal cell, Prokaryotic and Eukaryotic cell, Stem cells and their application. Biomolecules: Properties and functions of Carbohydrates, Nucleic acids, proteins, lipids.

Importance of special biomolecules; Enzymes (Classification (with one example each), Properties and functions), vitamins and hormones.

8 Hours

Batch: 2024

UNIT II

Biomolecules and Their Applications (Qualitative): Carbohydrates (cellulose-based water filters, PHA and PLA as bioplastics), Nucleic acids (DNA Vaccine for Rabies and RNA vaccines for Covid19, Forensics – DNA fingerprinting), Proteins (Proteins as food – whey protein and meat analogs, Plant based proteins), lipids (biodiesel, cleaning agents/ detergents), Enzymes (glucose-oxidase in biosensors, lignolytic enzyme in bio-bleaching).

8 Hours

UNIT III

Human Organ Systems And Bio Designs (Qualitative): Brain as a CPU system (architecture, CNS and Peripheral Nervous System, signal transmission, EEG, Robotic arms for prosthetics. Engineering solutions for Parkinson's disease). Eye as a Camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye). Heart as a pump system (architecture, electrical signalling - ECG monitoring and heart related issues, reasons for blockages of blood vessels, design of stents, pace makers, defibrillators). Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology - COPD, Ventilators, Heart-lung machine). Kidney as a filtration system (architecture, mechanism of filtration, CKD, dialysis systems).

8 Hours

UNIT IV

Nature-Bioinspired Materials And Mechanisms (Qualitative):

Echolocation (ultrasonography, sonars), Photosynthesis (photovoltaic cells, bionic leaf). Bird flying (GPS and aircrafts), Lotus leaf effect (Super hydrophobic and self-cleaning surfaces), Plant burrs (Velcro), Shark skin (Friction reducing swim suits), Kingfisher beak (Bullet train). Human Blood substitutes-hemoglobin-based oxygen carriers (HBOCs) and perflourocarbons (PFCs).

8 Hours

UNIT V

Trends In Bioengineering (Qualitative): Muscular and Skeletal Systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis), scaffolds and tissue engineering, Bioprinting techniques and materials, 3D printing of ear, bone and skin. 3D printed foods. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Self-healing Bioconcrete (based on bacillus spores, calcium lactate nutrients and biomineralization processes) and Bioremediation and Biomining via microbial surface adsorption (removal of heavy metals like Lead, Cadmium, Mercury, Arsenic).

8 Hours

Text Books:

- 1. Biology for Engineers, Rajendra Singh C and Rathnakar Rao N, Rajendra Singh C and Rathnakar Rao N Publishing, Bengaluru, 2023.
- 2. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022.
- 3. Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

- 4. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011.
- 5. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- 6. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.

- 7. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- 8. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 9. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019.
- 10. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- 11. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016.

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/121106008
- https://freevideolectures.com/course/4877/nptel-biology-engineers-other-non-biologists
- https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009
- https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006
- https://www.coursera.org/courses?query=biology
- https://onlinecourses.nptel.ac.in/noc19_ge31/preview
- https://www.classcentral.com/subject/biology
- https://www.futurelearn.com/courses/biology-basic-concepts

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Group Discussion of Case studies.
- Model Making and seminar/poster presentations.
- Design of novel device/equipment like Cellulose-based water filters, Filtration system.

	e Outcomes: completion of this course the student will be able to:				
CO1.	Elucidate the basic biological concepts via relevant industrial applications and case studies. (L1,L2)				
CO2.	Evaluate the principles of design and development, for exploring novel bioengineering projects. (L1,L2)				
CO3.	Corroborate the concepts of biomimetics for specific requirements. (L1,L2)				
CO4.	Think critically towards exploring innovative biobased solutions for socially relevant				

problems. (L1,L2)

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

					P(Os							PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
	CO1	2				3									2
COs	CO2	2	2												2
COS	CO3					3									2
	CO4					2									2
	AVG	2	2			3									2

Universal Human Values

Contact Hours/ Week:	1L	Credits:	1.0
Total Lecture Hours:	13	CIE Marks:	50
Sub. Code:	SHS02	SEE Marks:	50

Pre-requisites: Universal Human Values (conducted during induction programme)

1	rse objectives: s course will enable students to:
1	Understanding of self-exploration about themselves (human beings), family, society and nature/existence.
2	Appreciating the harmony in the human being, family, society and nature/existence
3	Strengthening holistic perception of co-existence and mutual fulfillment among the four orders of nature.

UNIT I

Understanding Harmony in the Human Being - Harmony in self: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'; Understanding the needs of Self ('I') and 'Body' - happiness and physical facility; Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer); Understanding the characteristics and activities of 'I' and harmony in 'I'.

3 Hours

Batch: 2024

UNIT II

Understanding Harmony in self and body: Understanding the harmony of 'I' with the Body: Sanyam and Health, correct appraisal of Physical needs, meaning of Prosperity in detail, Include discussions to differentiate between i) Prosperity and accumulation. ii) Ensuring health vs dealing with disease.

2 Hours

UNIT III

Understanding Harmony in the Family - Harmony in Human-Human Relationship: Understanding values in human - human relationship, meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness, Trust and Respect as the foundational values of relationship; Understanding the meaning of Trust, Difference between intention and competence; Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.

3 Hours

UNIT IV

Understanding Harmony in Society and Nature: Understanding the harmony in the society (society being an extension of family)- Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals. Understanding the harmony in the Nature; Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

2 Hours

Batch: 2024

UNIT V

Understanding Harmony in all levels of Existence: Understanding Existence as Co-existence of mutually interacting units in all-pervasive space; Holistic perception of harmony at all levels of existence. Include discussions on-human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

3 Hours

TEXT BOOKS

Gaur, R.R. &Sangal R – 'Foundation Course in Human Values and Professional Ethics; Presenting a universal approach to value education through self-exploration', Excel Books, Bangalore, 2016, ISBN: 978-8-174-46781-2

Rl	EFERENCE BOO	KS
1	Tripathi A.N.	'Human Values', New Age International Publisher, 2003, ISBN:
		81-224-1426-5

Web Resource:

- 1. http://www.storyofstuff.com
- 2. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw
- 3. https://fdp-si.aicte-india.org/8dayUHV_download.php
- 4. https://www.youtube.com/watch?v=8ovkLRYXIjE
- 5. https://www.youtube.com/watch?v=OgdNx0X9231

Course	e Outcomes:								
Upon c	completion of this course the student will be able to:								
CO1.	Become more aware of themselves, and their surroundings (family, society, nature)								
CO2.	Become more responsible in life, and value human relationships and human society								
CO3.	Have better critical ability in handling problems and in finding sustainable solutions								

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

		POs													PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3		
	CO ₁	3												3			
COs	CO ₂	3	2											3			
	CO ₃	3												3			
AVG		3												3			

Swift Programming

Batch: 2024

(Ability Enhancement Course-IV-1)

Contact Hours/ Week:	2P	Credits:	1.0
Total Practical Hours:	26	CIE Marks:	50
Sub. Code:	S4ISA01	SEE Marks:	50

Course	objectives:
This cou	urse will enable students to:
1.	Understand the fundamental concepts of Swift programming for iOS.
2.	Explore the usage of Swift data types, control statements and loops.
3.	Describe classes, structures, enumerations available in Swift.
4.	Develop iOS programs using Swift.

List of Problems for Laboratory

- 1. Write a swift program to demonstrate the different data type representation and declaring variables.
- 2. Write a swift program to demonstrate the concatenation of strings, variable values within the string.
- 3. Switches support any kind of data and a wide variety of comparison operations. Demonstrate this with swift program.
- 4. Dictionaries are an unordered collection. Write a swift program to find largest number and which kind of number was the largest.
- 5. Make a subclass of NamedShape called Circle that takes a radius and a name as arguments to its initializer. Implement an area() and a simpleDescription() method on the Circle class.
- 6. Define Rank enumeration to store Acc as 1 and other cards values with simpleDescription function to display message corresponding to value of Rank.
- 7. Demonstrate with swift program, Classes, enumerations, and structs can all adopt protocols.
- 8. Demonstrate with swift program to handle errors.
- 9. Write a swift program to demonstrate the arrays, sets and Dictionary.
- 10. Write a swift program to demonstrate the Early Exit.

TE	XT BOOKS	
1	Carlos M. Icaza	The Swift Programming Language
		https://carlosicaza.com/swiftbooks/SwiftLanguage.pdf

RI	EFERENCE BOOKS	
1	Learn Swift Programming	
	URL: https://www.programiz.com/swift-programming	

Course O	outcomes:
Upon con	appletion of this course the student will be able to:
CO 1.	Describe the fundamental concepts of Swift programming.
CO 2.	Develop simple Swift programs.
CO 3.	Apply and design the classes required to develop iOS applications.
CO 4.	Demonstrate the applications of arrays, sets and dictionary.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs) $\,$

	POs														PSOs		
		1	2	3	4	5	6	7	8	9	10	11	1	2	3		
	CO1	2				3									2		
COa	CO2	2	2												2		
COs	CO3					3									2		
	CO4					2									2		
	AVG	2	2			3									2		

Mobile Application Development

Batch: 2024

Contact Hours/ Week:	2P	Credits:	1
Total Lecture Hours:	26	CIE Marks:	50
Course Code:	S4ISA02	SEE Marks:	50

Cours	Course objectives:				
This co	This course will enable students to:				
6.	Explore mobile application development frameworks for Android.				
7.	Understand fundamental concepts of Android operating system.				
8.	B. Design real time mobile applications to solve the problems on android studio.				
9.	Develop user interface for mobile Application using widgets with event handling.				

I Introduction to

- Android Studio IDE
- The user interface
- Navigation
- Style and formatting
- Version control basics
- Managing dependencies
- Debug and profile tools

II Create the applications using Android Studio for the following tasks:

- 1. Displaying a suitable message like "Welcome to Android Laboratory" with the help of direct and indirect method invocation.
- 2. Develop an Android application to display explicit and implicit Intents.
- 3. Create an application to design a Visiting Card. The Visiting card should have a company logo at the top right corner. The company name should be displayed in Capital letters, aligned to the center. Information like the name of the employee, job title, phone number, address, email, fax and the website address is to be displayed.
- 4. Develop an Android application using controls like Button, TextView, EditText for designing a calculator having basic functionality like Addition, Subtraction, Multiplication, and Division.
- 5. Create a SIGN Up activity with Username and Password. Validation of password should happen based on the following rules:
 - Password should contain uppercase and lowercase letters.
 - Password should contain letters and numbers.
 - Password should contain special characters.
 - Minimum length of the password (the default value is 8).
- 6. Develop an application to set an image as wallpaper. On click of a button, the

- wallpaper image should start to change randomly every 30 seconds.
- 7. Write an android program to demonstrate scroll view and list view. (List view should array adapter. The adapter should use array list of companies. Each item in the list view should have company name, company address and its annual revenue.).

- 8. Write a program to create an activity with two buttons START and STOP. On pressing of the START button, the activity must start the counter by displaying the numbers from One end and the counter must keep on counting until the STOP button is pressed, Display the counter value in a TextView Control.
- 9. Create an activity like a phone dialer with CALL and SAVE buttons. On pressing the CALL button, it must call the phone number and on pressing the SAVE button it must save the number to the phone contacts.
- 10. Read student data from user and display it in the form of toast message using input controls

III Open-ended Experiments

• A group of two or three students are formed and a problem statement w.r.t Mobile application will be given, based on that, students should develop a Mobile App and demonstrate individually from each group.

TE	TEXT BOOKS						
1	lan F. Darwin	Android Cookbook, 2nd Edition, Publisher(s): O'Reilly Media, 2017.					
2	John Horton	Android Programming for Beginners, Packt Publishing, 2015.					

REFERENCES:

- 1. https://developer.android.com/training/basics/firstapp
- $2. \ https://www.mygreatlearning.com/academy/learn-for-free/courses/android-application-development\\$
- 3.https://www.w3schools.blog/android-tutorial

	e Outcomes: completion of this course the student will be able to:
CO1.	Design applications for Intents, Web based applications and Location based Applications.
CO2.	Apply essential Android Programming concepts.
CO3.	Develop various Android applications related to layouts & rich user interactive interfaces.
CO4.	Develop Android applications related to mobile calls.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes

(PSOs)	•					-								•	
							POs							PSOs	
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
COs	CO1	3												3	
COs	CO2	3	2											3	

Department of Information Science & Engg., Siddaganga Institute of Technology, Tumakuru

CO3		3						3	
CO4			3					3	
AVG	1	3	3					3	

Natural Language Processing

(Ability Enhancement Course-IV-3)

Contact Hours/ Week:	2P	Credits:	1
Total Lecture Hours:	26	CIE Marks:	50
Course Code:	S4ISA04	SEE Marks:	50

Cours	Course objectives:					
This co	This course will enable students to:					
10.	10. Describe the fundamental concepts natural language processing.					
11.	. Familiarize with syntax and semantics of NLP.					
12.	12. Gain insight of NLP tools to analyze large collections of text data					
13.	Familiarize with various NLP software libraries and data sets publicly available					

Introduction to Natural language processing

- Introduction to Python.
- Introduction to Natural Language Toolkit (NLTK).
- Python quick overview.
- Lexical analysis: Word and text tokenizer; n-gram and collocations.
- NLTK corpora (Publicly available)

SI. No.	Lab Programs /Topics Covered
1	Write Python programs for the following using NLTK:
	c) Perform tokenization (word and sentence) on a given input text.
	d) Remove stop words from a given input text.
2	Write Python programs for the following using NLTK:
	 c) Implement a function word_freq() that calculates the frequency of a given word in a corpus using NLTK's FreqDist().
	${ m d}) \;\;$ Find all four-letter words from a text file and display them in decreasing order of frequency.
3	Text Normalization using NLTK
	e) Implement stemming on a given text using Porter Stemmer or Snowball Stemmer.
	b) Perform lemmatization on the same text using WordNet Lemmatizer
4	Write a python program to find the probability of the given statement "This is my cat" by taking
	an example corpus into consideration.
5	Implement Word Sense Disambiguation (WSD) using NLTK to determine the correct meaning
	of ambiguous words in given sentences, and display both the possible senses
6	Implementation of n-gram model.
7	Implementation of PoS tagging.
8	Implementation and demonstration of Named entity recognition.

9	Write the python code to perform sentiment analysis using NLP.
10	Dataset Analysis with NLTK a) Load and analyze the dataset (print number of documents/categories) b) Find the 10 most frequent words in a selected category

REF	ERENCES:						
1.	Christopher D. Manning and HinrichSchutze	"Foundations of Natural Language Processing", 6 th Edition, The MIT Press Cambridge, Massachusetts London, England, 2003.					
2.	Daniel Jurafsky and James H. Martin	"Speech and Language Processing", Prentice Hall, 3 rd Edition 2009.					
3.	https://www.geeksforg	eeks.org/natural-language-processing-overview					
4.	https://www.geeksforgeeks.org/python-word-similarity-using-spacy/?ref=rp						
5.	https://pub.towardsai.net/natural-language-processing-nlp-with-python-tutorial-for-beginners-1f54e610a1a0						
6.	https://www.analyticsv basics/	dhya.com/blog/2021/02/basics-of-natural-language-processing-nlp-					
7.	https://towardsdatascie processing6a378e24dbf	nce.com/free-hands-on-tutorials-to-get-started-in-natural-language- c.					

Course	Outcomes:
Upon co	ompletion of this course the student will be able to:
CO1.	Demonstrate various linguistic and statistical features relevant to the basic NLP task.
CO2.	Compare natural language processing with manual and automated approaches.
CO3.	Apply Part-of-Speech (POS) tagging for a given natural language and suitable modeling technique based on the structure.
CO4.	Demonstrate algorithms and techniques for text-based processing of natural language with respect to morphology.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

POs												PSOs			
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
COs	CO1	3												2	
	CO2	2	2											2	
	CO3	1												2	
	CO4		2	3										2	
	AVG		2	3										2	